Groningen Improved xylose metabolism by a CYC 8 mutant of Saccharomyces cerevisiae
نویسندگان
چکیده
منابع مشابه
University of Groningen The Amino-Terminal Tail of Hxt11 Confers Membrane Stability to the Hxt2 Sugar Transporter and Improves Xylose Fermentation in the Presence of Acetic Acid
Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N-terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric H...
متن کاملMolecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis.
Yeast xylose metabolism is generally considered to be restricted to respirative conditions because the two-step oxidoreductase reactions from xylose to xylulose impose an anaerobic redox imbalance. We have recently developed, however, a Saccharomyces cerevisiae strain that is at present the only known yeast capable of anaerobic growth on xylose alone. Using transcriptome analysis of aerobic che...
متن کاملDirected evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consum...
متن کاملMolecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
Differences between the recombinant xylose-utilizing Saccharomyces cerevisiae strain TMB 3399 and the mutant strain TMB 3400, derived from TMB 3399 and displaying improved ability to utilize xylose, were investigated by using genome-wide expression analysis, physiological characterization, and biochemical assays. Samples for analysis were withdrawn from chemostat cultures. The characteristics o...
متن کاملOptimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.
D-Xylulokinase (XK) is essential for the metabolism of D-xylose in yeasts. However, overexpression of genes for XK, such as the Pichia stipitis XYL3 gene and the Saccharomyces cerevisiae XKS gene, can inhibit growth of S. cerevisiae on xylose. We varied the copy number and promoter strength of XYL3 or XKS1 to see how XK activity can affect xylose metabolism in S. cerevisiae. The S. cerevisiae g...
متن کامل