Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats

نویسندگان

  • Hideki Senoh
  • Hirokazu Kano
  • Masaaki Suzuki
  • Makoto Ohnishi
  • Hitomi Kondo
  • Kenji Takanobu
  • Yumi Umeda
  • Shigetoshi Aiso
  • Shoji Fukushima
چکیده

OBJECTIVES In this study, we focused on the qualitative and quantitative differences of the lung lesions induced by single or multiple intratracheal administration of nickel oxide nanoparticles (NiO). METHODS Male rats were randomized into groups receiving intratracheal administrations in a single dose or two to four divided doses of 2 mg/kg/bw. Bronchoalveolar lavage fluid (BALF) analyses were performed at 3 and 28 d post-dose. Histopathological analyses were performed at 28 and 91 d post-dose. RESULTS BALF analyses revealed pulmonary injury, inflammation, and increases in the parameters indicating processing the foreign material in all the NiO-treated groups. Histopathological analyses showed the phagocytosis of NiO by alveolar macrophages, degeneration and necrosis of alveolar macrophages, and inflammatory responses. In the comparison between single and multiple administrations, the trend for stronger toxicity effects was observed after multiple application at 3 d post-dose, while the obvious toxicity effects were also seen in case of single administration. No particular differences of lung lesions depending on the frequency of administration at 28 and 91 d post-dose were evident. CONCLUSION Intratracheal NiO administration induced strong toxic response thoroughly even by single administration. Therefore, single administration was concluded to be applicable to assess the inhalation toxicity of nanomaterials and can be used in the screening test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates.

OBJECTIVE We examined the pulmonary toxicity of nickel oxide nanoparticle agglomerates in the rat lung following an intratracheal instillation. METHODS The weighted average surface primary diameter of nickel oxide nanoparticles was 8.41 nm, and the count median diameter of nickel oxide nanoparticle agglomerates suspended in saline was 1.34 µm. Male Wistar rats were exposed to 1 mg (3.3 mg/kg)...

متن کامل

Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 ...

متن کامل

Comparison of the Pulmonary Oxidative Stress Caused by Intratracheal Instillation and Inhalation of NiO Nanoparticles when Equivalent Amounts of NiO Are Retained in the Lung.

NiO nanoparticles were administered to rat lungs via intratracheal instillation or inhalation. During pulmonary toxicity caused by NiO nanoparticles, the induction of oxidative stress is a major factor. Both intratracheal instillation and inhalation of NiO nanoparticles induced pulmonary oxidative stress. The oxidative stress response protein, heme oxygenase-1 (HO-1), was induced by the adminis...

متن کامل

Cubic NiO Nanoparticles: Synthesis and Characterization

In this paper, cubic nickel oxide nanoparticles were successfully prepared by solid-state thermal decomposition of nickel(II) macrocyclic Schiff-base complex at 450°C for 3 h without employing toxic solvent or surfactant and complicated equipment. nickel(II) macrocyclic Schiff-base complex was synthesized by the reaction of 1,2-bis(2-formyl-3-methoxyphenyl)propane, NiCl2•6H2O and 1,3-phenylened...

متن کامل

Cubic NiO Nanoparticles: Synthesis and Characterization

In this paper, cubic nickel oxide nanoparticles were successfully prepared by solid-state thermal decomposition of nickel(II) macrocyclic Schiff-base complex at 450°C for 3 h without employing toxic solvent or surfactant and complicated equipment. nickel(II) macrocyclic Schiff-base complex was synthesized by the reaction of 1,2-bis(2-formyl-3-methoxyphenyl)propane, NiCl2•6H2O and 1,3-phenylened...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2017