The tetrapod limb: a hypothesis on its origin.

نویسندگان

  • G P Wagner
  • C H Chiu
چکیده

A wrist joint and structures typical of the hand, such as digits, however, are absent in [Eustenopteron] (Andrews and Westoll, '68, p 240). Great changes must have been undergone during evolution of the ankle joint; the small number of large bones in the fin must somehow have developed into a large number of small bones, and it is very difficult to draw homologies in this region, or even be certain of what is being compared (Andrews and Westoll, '68, p 268). The tetrapod limb is one of the major morphological adaptations that facilitated the transition from an aquatic to a terrestrial lifestyle in vertebrate evolution. We review the paleontological evidence for the fin-limb transition and conclude that the innovation associated with evolution of the tetrapod limb is the zeugopodial-mesopodial transition, i.e., the evolution of the developmental mechanism that differentiates the distal parts of the limb (the autopodium, i.e., hand or foot) from the proximal parts. Based on a review of tetrapod limb and fish fin development, we propose a genetic hypothesis for the origin of the autopodium. In tetrapods the genes Hoxa-11 and Hoxa-13 have locally exclusive expression domains along the proximal-distal axis of the limb bud. The junction between the distal limit of Hoxa-11 expression and of the proximal limit of Hoxa-13 expression is involved in establishing the border between the zeugopodial and autopodial anlagen. In zebrafish, the expression domains of these genes are overlapping and there is no evidence for an autopodial equivalent in the fin skeleton. We propose that the evolution of the derived expression patterns of Hoxa-11 and Hoxa-13 may be causally involved in the origin of the tetrapod limb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary developmental biology of the tetrapod limb.

New insights into the origin of the tetrapod limb, and its early development and patterning, are emerging from a variety of fields. A wide diversity of approaches was reported at the BSDB Spring Symposium on 'The Evolution of Developmental Mechanisms' (Edinburgh, 1994); here I review the contributions these various approaches have made to understanding the evolutionary developmental biology of ...

متن کامل

Perspectives on the evolutionary origin of tetrapod limbs.

The study of the origin and evolution of the tetrapod limb has benefited enormously from the confluence of molecular and paleontological data. In the last two decades, our knowledge of the basic molecular mechanisms that control limb development has grown exponentially, and developmental biologists now have the possibility of combining molecular data with many available descriptions of the foss...

متن کامل

Biphasic Hoxd Gene Expression in Shark Paired Fins Reveals an Ancient Origin of the Distal Limb Domain

The evolutionary transition of fins to limbs involved development of a new suite of distal skeletal structures, the digits. During tetrapod limb development, genes at the 5' end of the HoxD cluster are expressed in two spatiotemporally distinct phases. In the first phase, Hoxd9-13 are activated sequentially and form nested domains along the anteroposterior axis of the limb. This initial phase p...

متن کامل

Conservation and Divergence of Regulatory Strategies at Hox Loci and the Origin of Tetrapod Digits

The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particular the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functiona...

متن کامل

Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes.

Tetrapods evolved from sarcopterygian fishes in the Devonian and were the first vertebrates to colonize land. The locomotor component of this transition can be divided into four major events: terrestriality, the origins of digited limbs, solid substrate-based locomotion, and alternating gaits that use pelvic appendages as major propulsors. As the sister group to tetrapods, lungfish are a morpho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental zoology

دوره 291 3  شماره 

صفحات  -

تاریخ انتشار 2001