A Floating Gate MOSFET Based Novel Programmable Current Reference

نویسندگان

  • V. Suresh Babu
  • Varun P. Gopi
  • M. R. Baiju
چکیده

In this paper a scheme is proposed for generating a programmable current reference which can be implemented in the CMOS technology. The current can be varied over a wide range by changing an external voltage applied to one of the control gates of FGMOS (Floating Gate MOSFET). For a range of supply voltages and temperature, CMOS current reference is found to be dependent, this dependence is compensated by subtracting two current outputs with the same dependencies on the supply voltage and temperature. The system performance is found to improve with the use of FGMOS. Mathematical analysis of the proposed circuit is done to establish supply voltage and temperature independence. Simulation and performance evaluation of the proposed current reference circuit is done using TANNER EDA Tools. The current reference shows the supply and temperature dependencies of 520 ppm/V and 312 ppm/oC, respectively. The proposed current reference can operate down to 0.9 V supply. Keywords-Floating Gate MOSFET, current reference, self bias scheme, temperature independency, supply voltage independency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Nano Scale MOSFET Structure for Low Leak Application

In this paper, novel hybrid MOSFET(HMOS) structure has been proposed to reduce the gate leakage current drastically. This novel hybrid MOSFET (HMOS) uses source/drain-to-gate non-overlap region in combination with high-K layer/interfacial oxide as gate stack. The extended S/D in the non-overlap region is induced by fringing gate electric field through the high-k dielectric spacer. The gate leak...

متن کامل

International Journal of Advance Research and Innovation

Design of a programmable frequency oscillator design using field programmable, analog, CMOS current conveyor has been presented; further, a design methodology to introduce on-chip /field programmability into the second generation current controlled current conveyor circuit (CCCII) is explained. To make the CCCII CMOS design programmable, a floating-gate transistor synapse is introduced to repla...

متن کامل

Novel Reconfigurable Two-MOSFET UV-programmable Floating-Gate Circuits for CARRY’, NAND, NOR or INVERT functions

This article presents two new, reconfigurable multifunction floating-gate circuit to produce either the INVERTED CARRY function for a FULL-ADDER, an INVERTER, or two-input NAND or NOR gates. The circuits contains two MOSFETs and three or four capacitively coupled input signals. SPICE simulations are shown, demonstrating the principal operation, together with preliminary measurements indicating ...

متن کامل

Design of a Resonant Suspended Gate MOSFET with Retrograde Channel Doping

High Q frequency reference devices are essential components in many Integrated circuits. This paper will focus on the Resonant Suspended Gate (RSG) MOSFET. The gate in this structure has been designed to resonate at 38.4MHz. The MOSFET in this device has a retrograde channel to achieve high output current. For this purpose, abrupt retrograde channel and Gaussian retrograde channels have bee...

متن کامل

Scaling Floating-Gate Devices Predicting Behavior for Programmable and Configurable Circuits and Systems

Abstract: This paper presents scaling of Floating-Gate (FG) devices, and the resulting implication to large-scale Field Programmable Analog Arrays (FPAA) systems. The properties of FG circuits and systems in one technology (e.g., 350 nm CMOS) are experimentally shown to roughly translate to FG circuits in scaled down processes in a way predictable through MOSFET physics concepts. Scaling FG dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014