Dual Adaptive Paths for Multiresolution Hierarchies
نویسندگان
چکیده
The recent increase in the generated polygonal dataset sizes has outpaced the performance of graphics hardware. Several solutions such as multiresolution hierarchies and level-of-detail rendering have been developed to bridge the increasing gap. However, the discrete levels of detail generate annoying popping effects, the preliminaries multiresolution schemes cannot perform drastic changes on the selected level of detail within the span of small number of frames, and the current cluster-based hierarchies suffer from the high-detailed representation of the boundaries between clusters. In this paper, we are presenting a novel approach for multiresolution hierarchy that supports dual paths for run-time adaptive simplification — fine and coarse. The proposed multiresolution hierarchy is based on the fan-merge operator and its reverse operator fan-split. The coarse simplification path is achieved by directly applying fan-merge/split, while the fine simplification route is performed by executing edge-collapse/vertex-split one at a time. The sequence of the edge-collapses/vertex-splits is encoded implicitly by the order of the children participating in the fan-merge/split operator. We shall refer to this multiresolution hierarchy as fan-hierarchy. Fan-hierarchy provides a compact data structure for multiresolution hierarchy, since it stores 7/6 pointers, on the average, instead of 3 pointers for each node. In addition, the resulting depth of the fan-hierarchy is usually smaller than the depth of hierarchies generated by edge-collapse based multiresolution schemes. It is also important to note that fan-hierarchy inherently utilizes fan representation for further acceleration of the rendering process.
منابع مشابه
Compressed Random-Access Trees for Spatially Coherent Data
Adaptive multiresolution hierarchies are highly efficient at representing spatially coherent graphics data. We introduce a framework for compressing such adaptive hierarchies using a compact randomly-accessible tree structure. Prior schemes have explored compressed trees, but nearly all involve entropy coding of a sequential traversal, thus preventing fine-grain random queries required by rende...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملCLODs: Dual Hierarchies for Multiresolution Collision Detection
We present “contact levels of detail” (CLOD), a novel concept for multiresolution collision detection. Given a polyhedral model, our algorithm automatically builds a “dual hierarchy”, both a multiresolution representation of the original model and its bounding volume hierarchy for accelerating collision queries. We have proposed various error metrics, including object-space errors, velocity dep...
متن کاملn-Dimensional multiresolution representation of subdivision meshes with arbitrary topology
We present a new model for the representation of n-dimensional multiresolution meshes. It provides a robust topological representation of arbitrary meshes that are combined in closely interlinked levels of resolution. The proposed combinatorial model is formalized through the mathematical model of combinatorial maps allowing us to give a general formulation, in any dimensions, of the topologica...
متن کاملMerged Multiresolution Hierarchies for Shadow Map Compression
Multiresolution Hierarchies (MH) and Directed Acyclic Graphs (DAG) are two recent approaches for the compression of highresolution shadow information. In this paper, we introduce Merged Multiresolution Hierarchies (MMH), a novel data structure that unifies both concepts. An MMH leverages both hierarchical homogeneity exploited in MHs, as well as topological similarities exploited in DAG represe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Image Graphics
دوره 7 شماره
صفحات -
تاریخ انتشار 2007