A cognitive control approach to interference mitigation in communications-based train control (CBTC) co-existing with passenger information systems (PISs)
نویسندگان
چکیده
As a key component of urban rail transit systems, communications-based train control (CBTC) is an automated train control system using train-ground communications to ensure efficient operation of rail vehicles. In addition to CBTC systems, passenger information systems (PISs) are adopted in urban rail transit systems to improve quality of service (QoS) offered to customers. The interference between CBTC systems and PISs is an important factor impacting QoS of both CBTC systems and PISs. With recent advances in cognitive dynamic systems, in this paper, we take a cognitive control approach to interference mitigation considering the co-existence of CBTC systems and PISs. In our cognitive control approach, the notion of information gap is adopted to quantitatively describe effects of interference on CBTC. The wireless channel is modeled as a finite-state Markov chain with multiple state transition probability matrices, which are derived from real field measurements. Simulation results show that the proposed cognitive control approach can significantly improve performance of CBTC train-ground communications under interference from co-existing PISs.
منابع مشابه
Predictive Function Control for Communication - Based Train Control ( CBTC ) Systems Regular Paper
In Communication‐Based Train Control (CBTC) systems, random transmission delays and packet drops are inevitable in the wireless networks, which could result in unnecessary traction, brakes or even emergency brakes of trains, losses of line capacity and passenger dissatisfaction. This paper applies predictive function control technology with a mixed H H / 2 contr...
متن کاملA Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems
Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...
متن کاملCBTC (Communication Based Train Control): system and development
CBTC (Communication Based Train Control) systems are known as comprehensive, integrated and intelligent control systems for rail systems including mainline railways, light rails and underground lines in cities. With the development of modern data communication, computer and control techniques, CBTC represents the future direction of rail control systems. At present, CBTC has been used in light ...
متن کاملEmergency Management of Urban Rail Transportation Using CBTC System
Urban rail transit systems are rapidly developing around the world. Due to a great deal of urban traffic pressure, improving the efficiency and capacity of urban rail transit systems is an increasing demand. Because it is a key subsystem of urban rail transit systems, communication-based train control(CBTC) is an automated train control system that makes use of train–ground wireless communicati...
متن کاملOn Joint Sub-channel Allocation, Duplexing Mode Selection, and Power Control in Full-Duplex Co-Channel Femtocell Networks
As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially uti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017