Relative cohomology of polynomial mappings

نویسنده

  • Philippe Bonnet
چکیده

Let F be a polynomial mapping from C to C with n > q. We study the De Rham cohomology of its fibres and its relative cohomology groups, by introducing a special fibre F−1(∞) ”at infinity” and its cohomology. Let us fix a weighted homogeneous degree on C[x1, ..., xn] with strictly positive weights. The fibre at infinity is the zero set of the leading terms of the coordinate functions of F . We introduce the cohomology groups Hk(F−1(∞)) of F at infinity. These groups enable us to compute all the other cohomology groups of F . For instance, if the fibre at infinity has an isolated singularity at the origin, we prove that every weighted homogeneous basis of Hn−q(F−1(∞)) is a basis of all the groups Hn−q(F−1(y)) and also a basis of the (n−q) relative cohomology group of F . Moreover the dimension of Hn−q(F−1(∞)) is given by a global Milnor number of F , which only depends on the leading terms of the coordinate functions of F .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative (co)homology of $F$-Gorenstein modules

We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.

متن کامل

Relative Cohen–macaulayness of Bigraded Modules

In this paper we study the local cohomology of all finitely generated bigraded modules over a standard bigraded polynomial ring which have only one nonvanishing local cohomology with respect to one of the irrelevant bigraded ideals.

متن کامل

Abel-jacobi Mappings and Finiteness of Motivic Cohomology Groups

1. Notation and generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2. Varieties over local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3. Varieties over p-adic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4. Number field ca...

متن کامل

Bernstein-sato Polynomial versus Cohomology of the Milnor Fiber for Generic Hyperplane Arrangements

Let Q ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree k > 0. We establish a connection between the Bernstein-Sato polynomial bQ(s) and the degrees of the generators for the top cohomology of the associated Milnor fiber. In particular, the integer uQ = max{i ∈ Z : bQ(−(i+n)/k) = 0} bounds the top degree (as differential form) of the elements in H DR (Q(1), C). The link is provided by t...

متن کامل

M ar 1 99 8 WITTEN DEFORMATION AND POLYNOMIAL DIFFERENTIAL FORMS

As is well-known, the Witten deformation dh of the De Rham complex computes the De Rham cohomology. In this paper we study the Witten deformation on a noncompact manifold M and restrict it to differential forms which behave polynomially near infinity. Such polynomial differential forms naturally appear on manifolds with a cylindrical structure. We prove that the cohomology of the Witten deforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008