An Automatically Configurable Portfolio-based Planner with Macro-actions: PbP

نویسندگان

  • Alfonso Gerevini
  • Alessandro Saetti
  • Mauro Vallati
چکیده

While several powerful domain-independent planners have recently been developed, no one of these clearly outperforms all the others in every known benchmark domain. We present PbP, a multi-planner which automatically configures a portfolio of planners by (i) computing some sets of macro-actions for every planner in the portfolio, (ii) selecting a promising combination of planners in the portfolio and relative useful macro-actions, and (iii) defining some running time slots for their round-robin scheduling during planning. The configuration relies on some knowledge about the performance of the planners in the portfolio and relative macro-actions which is automatically generated from a training problem set. PbP entered the learning track of IPC-2008 and was the overall winner of this competition track. An experimental study confirms the effectiveness of PbP, and shows that the learned configuration knowledge is useful for PbP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planning through Automatic Portfolio Configuration: The PbP Approach

In the field of domain-independent planning, several powerful planners implementing different techniques have been developed. However, no one of these systems outperforms all others in every known benchmark domain. In this work, we propose a multi-planner approach that automatically configures a portfolio of planning techniques for each given domain. The configuration process for a given domain...

متن کامل

PbP2: Automatic Configuration of a Portfolio-based Multi-Planner

We present PbP2, an automated system that generates efficient domain-specific multi-planners from a portfolio of domain-independent planning techniques by (i) computing some sets of macro-actions for every planner in the portfolio, (ii) optimizing the parameter setting of the parameterized planners in the portfolio, (iii) selecting a promising combination of planners in the portfolio and relati...

متن کامل

PUMA: Planning Under Uncertainty with Macro-Actions

Planning in large, partially observable domains is challenging, especially when a long-horizon lookahead is necessary to obtain a good policy. Traditional POMDP planners that plan a different potential action for each future observation can be prohibitively expensive when planning many steps ahead. An efficient solution for planning far into the future in fully observable domains is to use temp...

متن کامل

Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability

The use of automatically learned knowledge for a planning domain can significantly improve the performance of a generic planner when solving a problem in this domain. In this work, we focus on the well-known SAT-based approach to planning and investigate two types of learned knowledge that have not been studied in this planning framework before: macro-actions and planning horizon. Macro-actions...

متن کامل

Macro - FF

This document describes Macro-FF, an adaptive planning system developed on top of FF version 2.3. The original FF is a fully automatic planner that uses a heuristic search approach. In addition, Macro-FF can automatically learn and use macro-actions with the goal of reducing the number of expanded nodes in the search. Macro-FF also includes implementation enhancements for reducing space and CPU...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009