Direct and Iterative Solution of the Generalized Dirichlet-Neumann Map for Elliptic PDEs on Square Domains

نویسندگان

  • A. G. Sifalakis
  • S. R. Fulton
  • E. P. Papadopoulou
  • Y. G. Saridakis
چکیده

In this work we derive the structural properties of the Collocation coefficient matrix associated with the Dirichlet-Neumann map for Laplace’s equation on a square domain. The analysis is independent of the choice of basis functions and includes the case involving the same type of boundary conditions on all sides, as well as the case where different boundary conditions are used on each side of the square domain. Taking advantage of said properties, we present efficient implementations of direct factorization and iterative methods, including classical SOR-type and Krylov subspace (Bi-CGSTAB and GMRES) methods appropriately preconditioned, for both Sine and Chebyshev basis functions. Numerical experimentation, to verify our results, is also included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Iterative Methods for the Solution of the Dirichlet-Neumann Map for Linear Elliptic PDEs on Regular Polygon Domains

A generalized Dirichlet to Neumann map is one of the main aspects characterizing a recently introduced method for analyzing linear elliptic PDEs, through which it became possible to couple known and unknown components of the solution on the boundary of the domain without solving on its interior. For its numerical solution, a well conditioned quadratically convergent sine-Collocation method was ...

متن کامل

The Generalized Dirichlet-Neumann Map for Linear Elliptic PDEs and its Numerical Implementation

A new approach for analyzing boundary value problems for linear and for integrable nonlinear PDEs was introduced in [1]. For linear elliptic PDEs, an important aspect of this approach is the characterization of a generalized Dirichlet to Neumann map: given the derivative of the solution along a direction of an arbitrary angle to the boundary, the derivative of the solution perpendicularly to th...

متن کامل

Generalized Q-functions and Dirichlet-to-neumann Maps for Elliptic Differential Operators

The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein ...

متن کامل

A numerical technique for linear elliptic partial differential equations in polygonal domains

Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear...

متن کامل

Fast Fourier Transform Solvers and Preconditioners for Quadratic Spline Collocation

Quadratic Spline Collocation (QSC) methods of optimal order of convergence have been recently developed for the solution of elliptic Partial Differential Equations (PDEs). In this paper, linear solvers based on Fast Fourier Transforms (FFT) are developed for the solution of the QSC equations. The complexity of the FFT solvers is O(N2 logN), where N is the gridsize in one dimension. These direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008