Dec-POMDPs as Non-Observable MDPs

نویسندگان

  • Frans A. Oliehoek
  • Christopher Amato
چکیده

A recent insight in the field of decentralized partially observable Markov decision processes (Dec-POMDPs) is that it is possible to convert a Dec-POMDP to a non-observable MDP, which is a special case of POMDP. This technical report provides an overview of this reduction and pointers to related literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Planning with Risk-Sensitive Criterion

Probabilistic planning models and, in particular, Markov Decision Processes (MDPs), Partially Observable Markov Decision Processes (POMDPs) and Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) have been extensively used by AI and Decision Theoretic communities for planning under uncertainty. Typically, the solvers for probabilistic planning models find policies that min...

متن کامل

Producing efficient error-bounded solutions for transition independent decentralized mdps

There has been substantial progress on algorithms for single-agent sequential decision making using partially observable Markov decision processes (POMDPs). A number of efficient algorithms for solving POMDPs share two desirable properties: error-bounds and fast convergence rates. Despite significant efforts, no algorithms for solving decentralized POMDPs benefit from these properties, leading ...

متن کامل

Filtered Fictitious Play for Perturbed Observation Potential Games and Decentralised POMDPs

Potential games and decentralised partially observable MDPs (Dec–POMDPs) are two commonly used models of multi–agent interaction, for static optimisation and sequential decision– making settings, respectively. In this paper we introduce filtered fictitious play for solving repeated potential games in which each player’s observations of others’ actions are perturbed by random noise, and use this...

متن کامل

Exploiting separability in multiagent planning with continuous-state MDPs

Recent years have seen significant advances in techniques for optimally solving multiagent problems represented as decentralized partially observable Markov decision processes (Dec-POMDPs). A new method achieves scalability gains by converting Dec-POMDPs into continuous state MDPs. This method relies on the assumption of a centralized planning phase that generates a set of decentralized policie...

متن کامل

Automated Generation of Interaction Graphs for Value-Factored Dec-POMDPs

The Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is a powerful model for multiagent planning under uncertainty, but its applicability is hindered by its high complexity – solving Dec-POMDPs optimally is NEXP-hard. Recently, Kumar et al. introduced the Value Factorization (VF) framework, which exploits decomposable value functions that can be factored into subfunctions....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014