Natural Underwater Adhesives.
نویسندگان
چکیده
The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)(3) coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent curing.
منابع مشابه
Strong underwater adhesives made by self-assembling multi-protein nanofibres.
Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesi...
متن کاملBiomimetic adhesive materials containing cyanoacryl group for medical application.
For underwater adhesives with biocompatible and more flexible bonds using biomimetic adhesive groups, DOPA-like adhesive molecules were modified with cyanoacrylates to obtain different repeating units and chain length copolymers. The goal of this work is to copy the mechanisms of underwater bonding to create synthetic water-borne underwater medical adhesives through blending of the modified DOP...
متن کاملBiotribology inspires new technologies
This review deals with natural biotribological systems and how they have inspired novel microand nanotechnological applications. The biogenic devices presented here have functional units in the microand nanometer regime and have been evolutionarily optimized over millions of years. The examples discussed comprise natural micromechanical systems made of nanostructured silica (diatoms produce hin...
متن کاملSelf-Assembling Multi-Component Nanofibers for Strong Bioinspired Underwater Adhesives
Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly, and structure-function relationship of those natural amyloid fibers remains limited. Thus, designing biomimetic amyloidbased adhesiv...
متن کاملAtomic force microscopy study of living diatoms in ambient conditions.
We present the first in vivo study of diatoms using atomic force microscopy (AFM). Three chain-forming, benthic freshwater species -Eunotia sudetica, Navicula seminulum and a yet unidentified species - are directly imaged while growing on glass slides. Using the AFM, we imaged the topography of the diatom frustules at the nanometre range scale and we determined the thickness of the organic case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of polymer science. Part B, Polymer physics
دوره 49 11 شماره
صفحات -
تاریخ انتشار 2011