On Optimization over the Efficient Set in Linear Multicriteria Programming
نویسندگان
چکیده
The efficient set of a linear multicriteria programming problem can be represented by a ’reverse convex constraint’ of the form g(z) ≤ 0, where g is a concave function. Consequently, the problem of optimizing some real function over the efficient set belongs to an important problem class of global optimization called reverse convex programming. Since the concave function used in the literature is only defined on some set containing the feasible set of the underlying multicriteria programming problem, most global optimization techniques for handling this kind of reverse convex constraints can not be applied. The main purpose of our article is to present a method for overcoming this disadvantage. We construct a concave function which is finitely defined on the whole space and can be considered as an extension of the existing function. Different forms of the linear multicriteria programming problem are discussed, including the minimum maximal flow problem as an example.
منابع مشابه
On solving possibilistic multi- objective De Novo linear programming
Multi-objective De Novo linear programming (MODNLP) is problem for designing optimal system by reshaping the feasible set (Fiala [3] ). This paper deals with MODNLP having possibilistic objective functions coefficients. The problem is considered by inserting possibilistic data in the objective functions coefficients. The solution of the problem is defined and established under the using of effi...
متن کاملOn the equivalency between a linear bilevel programming problem and linear optimization over the efficient set
where x, c, c ∈ R1 , x, c, c ∈ R2 , b ∈ R, A1 is an m × n1 matrix, A2 is an m × n2 matrix, and T denotes the transposition. Such problems may arise when there are two decision makers at different hierarchical levels having joint constraints and different and possibly conflicting objectives. The decision-making process is sequential. The leader controlling the variables of x has the first choice...
متن کاملA bi-level linear programming problem for computing the nadir point in MOLP
Computing the exact ideal and nadir criterion values is a very important subject in multi-objective linear programming (MOLP) problems. In fact, these values define the ideal and nadir points as lower and upper bounds on the nondominated points. Whereas determining the ideal point is an easy work, because it is equivalent to optimize a convex function (linear function) over a con...
متن کاملA Survey on Different Solution Concepts in Multiobjective Linear Programming Problems with Interval Coefficients
Optimization problems have dedicated a branch of research to themselves for a long time ago. In this field, multiobjective programming has special importance. Since in most real-world multiobjective programming problems the possibility of determining the coefficients certainly is not existed, multiobjective linear programming problems with interval coefficients are investigated in this paper. C...
متن کاملOn the optimization of Dombi non-linear programming
Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of the parameter. This family of t-norms covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. In this paper, we study a nonlinear optimization problem in which the constraints are defined as fuzzy relational equations (FRE) with the Dombi...
متن کامل