Off-Grid DOA Estimation Based on Sparse Representation and Rife Algorithm
نویسندگان
چکیده
In this paper, off-grid DOA estimation based on sparse representation and Rife algorithm is presented to improve performance when the sparse signal directions are not on the predefined angular grids. The algorithm is divided into two steps. Firstly, the real-valued sparse representation of array covariance vector (RV-SRACV) algorithm is used to do off-grid DOA estimation, and it does not need to estimate the noise power. Secondly, Rife algorithm is used to correct the DOA estimation, and after that the DOA can be accurately estimated. The effectiveness and superior performance of the proposed algorithm are demonstrated in the simulation results.
منابع مشابه
A Modified Rife Algorithm for Off-Grid DOA Estimation Based on Sparse Representations
In this paper we address the problem of off-grid direction of arrival (DOA) estimation based on sparse representations in the situation of multiple measurement vectors (MMV). A novel sparse DOA estimation method which changes MMV problem to SMV is proposed. This method uses sparse representations based on weighted eigenvectors (SRBWEV) to deal with the MMV problem. MMV problem can be changed to...
متن کاملUnderdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning
Sparse Bayesian learning (SBL) is applied to the coprime array for underdetermined wideband direction of arrival (DOA) estimation. Using the augmented covariance matrix, the coprime array can achieve a higher number of degrees of freedom (DOFs) to resolve more sources than the number of physical sensors. The sparse-based DOA estimation can deteriorate the detection and estimation performance be...
متن کاملOff-Grid Direction-of-Arrival Estimation Using a Sparse Array Covariance Matrix
An off-grid direction-of-arrival (DOA) estimation method that utilizes a sparse array covariance matrix is proposed. In this method, the array covariance matrix is sparsely represented in the form of a vector and then modified to become an off-grid DOA estimation model according to the first-order Taylor series. By solving for the two sparse vectors in the resulting array covariance matrix, the...
متن کاملOff-Grid DOA Estimation Using Alternating Block Coordinate Descent in Compressed Sensing
This paper presents a novel off-grid direction of arrival (DOA) estimation method to achieve the superior performance in compressed sensing (CS), in which DOA estimation problem is cast as a sparse reconstruction. By minimizing the mixed k-l norm, the proposed method can reconstruct the sparse source and estimate grid error caused by mismatch. An iterative process that minimizes the mixed k-l n...
متن کاملJoint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-comp...
متن کامل