Assessing a land surface model’s improvements with GRACE estimates
نویسندگان
چکیده
[1] The Gravity Recovery and Climate Experiment (GRACE) satellites have produced an unprecedented data set of terrestrial water storage (TWS) change in large-scale river basins. Recent research has found that monthly variations of soil moisture and snow water simulated by land surface models compared favorably with the GRACEderived TWS change. Compared to the GRACE data, the standard version of the National Center for Atmospheric Research (NCAR) Community Land Model (CLM) produces a weaker TWS variability in tropical and midlatitudes but a stronger TWS variation in high latitudes. However, a modified version of CLM that includes more realistic interception, runoff, and frozen soil processes improves the simulation of TWS change in global river basins of various scales. In addition, the modified CLM improves the modeling of evapotranspiration through the improvements in the modeling of TWS variation and runoff in the Amazon River basin. Along this line of research, this paper shows that such GRACE data can be used as a means of evaluating the hydrological schemes in a land surface model. Citation: Niu, G.-Y., and Z.-L. Yang (2006), Assessing a land surface model’s improvements with GRACE estimates, Geophys. Res. Lett., 33, L07401, doi:10.1029/2005GL025555.
منابع مشابه
Accuracy of GRACE mass estimates
[1] The GRACE satellite mission is mapping the Earth’s gravity field at monthly intervals. The solutions can be used to determine monthly changes in the distribution of water on land and in the ocean. Most GRACE studies to-date have focussed on producing maps of mass variability, with little discussion of the errors in those maps. Error estimates, though, are necessary if GRACE is to be used as...
متن کاملDrought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations
Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations" (2012). NASA Publications. [1] The Gravity Recovery and Climate Experiment (GRACE) twin satellites observe time variations in Earth's gravity field which yield valuable information about changes in terrestrial water storage (TWS). GRACE is characterized by low sp...
متن کاملRetrieving snow mass from GRACE terrestrial water storage change with a land surface model
[1] A reliable snow water equivalent (SWE) product is critical for climate and hydrology studies in Arctic regions. Passive microwave sensors aboard satellites provide a capability of observing global SWE and have produced many SWE datasets. However, these datasets have significant errors in boreal forest regions and where snowpack is deep or wet. The Gravity Recovery and Climate Experiment (GR...
متن کاملGlobal models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data
Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002-2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) ...
متن کاملAssimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential
We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA’s Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of G...
متن کامل