Flag Gromov-Witten invariants via crystals
نویسندگان
چکیده
We apply ideas from crystal theory to affine Schubert calculus and flag Gromov–Witten invariants. By defining operators on certain decompositions of elements in the type-A affine Weyl group, we produce a crystal reflecting the internal structure of Specht modules associated to permutation diagrams. We show how this crystal framework can be applied to study the product of a Schur function with a k-Schur function. Consequently, we prove that a subclass of 3-point Gromov–Witten invariants of complete flag varieties for C enumerate the highest weight elements under these operators. Résumé. Nous appliquons des idées provenant de la théorie des bases cristallines au calcul de Schubert affine et aux invariants de drapeaux de Gromov–Witten. Nous définissons des opérateurs sur certaines décompositions d’éléments de groupes de Weyl affines en type A afin de construire une base cristalline encodant la structure interne des modules de Specht associés aux diagrammes de permutations. Nous montrons comment la structure de crystal permet d’étudier le produit d’une fonction de Schur avec une k-fonction de Schur. En conséquence, nous prouvons que la sous-classe des invariants de 3-points de Gromov–Witten d’une variété complète de drapeaux complets pour C énumère les éléments de poids maximaux pour ces opérateurs.
منابع مشابه
Symmetries of Gromov-Witten Invariants
The group (Z/nZ) is shown to act on the Gromov-Witten invariants of the complex flag manifold. We also deduce several corollaries of this result.
متن کاملK-theoretic J-functions of Type a Flag Varieties
The J-function in Gromov-Witten theory is a generating function for one-point genus zero Gromov-Witten invariants with descendants. Here we give formulas for the quantum K-theoretic J-functions of type A flag manifolds. As an application, we prove the quantum K-theoretic J-function version of the abelian-nonabelian correspondence for Grassmannians and products of projective space.
متن کاملThe Abelian/nonabelian Correspondence and Frobenius Manifolds
We propose an approach via Frobenius manifolds to the study (began in [BCK2]) of the relation between rational Gromov-Witten invariants of nonabelian quotients X//G and those of the corresponding “abelianized” quotients X//T, for T a maximal torus in G. The ensuing conjecture expresses the Gromov-Witten potential of X//G in terms of the potential of X//T. We prove this conjecture when the nonab...
متن کاملGromov - Witten invariants and virtual fundamental classes
This article is an expanded version of talks which the authors have given in Oberwolfach, Bochum, and at the Fano Conference in Torino. In these talks we explained the main results of our papers " Gauge theoretical equivariant Gromov-Witten invariants and the full Seiberg-Witten invariants of ruled surfaces " and " Comparing virtual fundamental classes: Gauge theoretical Gromov-Witten invariant...
متن کاملQuantum K-theory of Grassmannians
We show that (equivariant) K-theoretic 3-point Gromov-Witten invariants of genus zero on a Grassmann variety are equal to triple intersections computed in the ordinary (equivariant) K-theory of a two-step flag manifold, thus generalizing an earlier result of Buch, Kresch, and Tamvakis. In the process we show that the Gromov-Witten variety of curves passing through 3 general points is irreducibl...
متن کامل