Stronger inhibition by nonsteroid anti-inflammatory drugs of cyclooxygenase-1 in endothelial cells than platelets offers an explanation for increased risk of thrombotic events.

نویسندگان

  • Jane A Mitchell
  • Ruth Lucas
  • Ivana Vojnovic
  • Kamrul Hasan
  • John R Pepper
  • Timothy D Warner
چکیده

Recent data have suggested that regular consumption of nonsteroid anti-inflammatory drugs (NSAIDs), particularly selective inhibitors of cyclo-oxygenase-2 (COX-2), is associated with an increased risk of thrombotic events. It has been suggested that this is due to NSAIDs reducing the release from the endothelium of the antithrombotic mediator prostaglandin I2 as a result of inhibition of endothelial COX-2. Here, however, we show that despite normal human vessels and endothelial cells containing cyclo-oxygenase-1 (COX-1) without any detectable COX-2, COX-1 in vessels or endothelial cells is more readily inhibited by NSAIDs and COX-2-selective drugs than COX-1 in platelets (e.g., log IC50+/-SEM values for endothelial cells vs. platelets: naproxen -5.59+/-0.07 vs. -4.81+/-0.04; rofecoxib -4.93+/-0.04 vs. -3.75+/-0.03; n=7). In broken cell preparations, the selectivities of the tested drugs toward endothelial cell over platelet COX-1 were lost. These observations suggest that variations in cellular conditions, such as endogenous peroxide tone and substrate supply, and not the isoform of cyclo-oxygenase present, dictate the effects of NSAIDs on endothelial cells vs. platelets. This may well be because the platelet is not a good representative of COX-1 activity within the body as it produces prostanoids in an explosive burst that does not reflect tonic release from other cells. The results reported here can offer an explanation for the apparent ability of NSAIDs and COX-2-selective inhibitors to increase the risk of myocardial infarction and stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O10: Thrombo-Inflammation in Acute Ischemic Stroke

Ischemic stroke has been classified as a merely thrombotic disease, so the main goal of its treatment is the recanalization of the occluded vasculature. However, despite fast restoration of blood circulation, progressive stroke still develops in many patients, which has led to the concept of reperfusion injury.  The underlying mechanism is only partly known. Though, it is accepted now, tha...

متن کامل

Risk management profile of etoricoxib: an example of personalized medicine

The development of nonsteroidal anti-inflammatory drugs (NSAIDs) selective for cyclooxygenase (COX)-2 (named coxibs) has been driven by the aim of reducing the incidence of serious gastrointestinal (GI) adverse events associated with the administration of traditional (t) NSAIDs - mainly dependent on the inhibition of COX-1 in GI tract and platelets. However, their use has unravelled the importa...

متن کامل

LOX-1 protein, A Biomarker in the Prognosis of Atherosclerosis

LOX-1 is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunctions, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent bio...

متن کامل

R.m. Botting Inhibitors of Cyclooxygenases: Mechanisms, Selectivity and Uses

The prostaglandins are lipid mediators, discovered in the 1930s by von Euler in Sweden and Goldblatt in the United Kingdom. They are made by the bifunctional enzyme, cyclooxygenase, which has both cyclooxygenase and peroxidase activities in the same molecule. Prostaglandins are involved in physiological functions such as protection of the stomach mucosa, aggregation of platelets and regulation ...

متن کامل

Inhibitory Effects of Epigallocatechin-3-Gallate on Microsomal Cyclooxygenase-1 Activity in Platelets

In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane A2 (TXA2) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 20 14  شماره 

صفحات  -

تاریخ انتشار 2006