DeepDeblur: Fast one-step blurry face images restoration

نویسندگان

  • Lingxiao Wang
  • Yali Li
  • Shengjin Wang
چکیده

We propose a very fast and effective one-step restoring method for blurry face images. In the last decades, many blind deblurring algorithms have been proposed to restore latent sharp images. However, these algorithms run slowly because of involving two steps: kernel estimation and following non-blind deconvolution or latent image estimation. Also they cannot handle face images in small size. Our proposed method restores sharp face images directly in one step using Convolutional Neural Network. Unlike previous deep learning involved methods that can only handle a single blur kernel at one time, our network is trained on totally random and numerous training sample pairs to deal with the variances due to different blur kernels in practice. A smoothness regularization as well as a facial regularization are added to keep facial identity information which is the key to face image applications. Comprehensive experiments demonstrate that our proposed method can handle various blur kenels and achieve state-of-the-art results for small size blurry face images restoration. Moreover, the proposed method shows significant improvement in face recognition accuracy along with increasing running speed by more than 100 times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deblurring Face Images with Exemplars

The human face is one of the most interesting subjects involved in numerous applications. Significant progress has been made towards the image deblurring problem, however, existing generic deblurring methods are not able to achieve satisfying results on blurry face images. The success of the state-of-the-art image deblurring methods stems mainly from implicit or explicit restoration of salient ...

متن کامل

Variational image segmentation model coupled with image restoration achievements

Image segmentation and image restoration are two important topics in image processing with great achievements. In this paper, we propose a new multiphase segmentation model by combining image restoration and image segmentation models. Utilizing image restoration aspects, the proposed segmentation model can effectively and robustly tackle high noisy images, blurry images, images with missing pix...

متن کامل

A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients

In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Bayesian image restoration for mosaic active imaging

In this paper, we focus on the restoration of images acquired with a new active imaging concept. This new instrument generates a mosaic of active imaging acquisitions. We rst describe a simpli ed Bayesian model of this so-called mosaic active imaging . We also assume a prior on the distribution of images, using the total variation, and deduce a restoration algorithm. This algorithm iterates one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09515  شماره 

صفحات  -

تاریخ انتشار 2017