LEQG/LTR Controller Design with Extended Kalman Filter for Sensorless Induction Motor Servo Drive

نویسندگان

  • Jium-Ming LIN
  • Hsiu-Ping WANG
  • Ming-Chang LIN
چکیده

In this paper, the Linear Exponential Quadratic Gaussian with Loop Transfer Recovery (LEQG/LTR) methodology is employed for the design of high performance induction motor servo systems. In addition, we design a speed sensorless induction motor vector controlled driver with both the extended Kalman filter and the LEQG/LTR algorithm. The experimental realization of an induction servo system is given. Compared with the traditional PI and LQG/LTR methods, it can be seen that the system output sensitivity for parameter variations and the rising time for larger command input of the proposed method can be significantly reduced. key words: linear-exponential-quadratic-gaussian, loop-transfer-recovery, speed sensorless, induction motor servo drives, vector control, extended Kalman filter

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Sensorless Vector Control of Linear Induction Motor on Primary and Secondary Flux Oriented based on Fuzzy PI Controller

This paper presents a sensorless system drive on primary flux oriented control (PFOC) and secondary flux oriented control (SFOC) for the linear induction motor (LIM) with taking into account end effect. Extended kalman filter (EKF) is applied to estimate LIM speed by measuring motor voltages and currents. In order to achieve desirable dynamic and robustness motor performance instead of traditio...

متن کامل

Sensorless control of electric motors with Kalman Filters: applications to robotic and industrial systems

The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor’s angular velocity is estimated by an Extended Kalman Filter which processesmeasurements of the rotor’s angle. Sensorl...

متن کامل

Sensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter

This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...

متن کامل

Speed Sensorless Fault-Tolerant Drive System of 3- Phase Induction Motor Using Switching Extended Kalman Filter

Speed sensorless vector control of 3-phase induction motor under open-phase fault (faulty 3phase induction motor) based on Indirect Rotor Field-Oriented Control (IRFOC) is proposed in this paper. To ensure high performance FOC of induction motor drives, the estimation of the rotor speed is necessary. However, the algorithm used to estimate the rotor speed for a 3-phase induction motor cannot be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999