DACCER: Distributed Assessment of the Closeness CEntrality Ranking in complex networks
نویسندگان
چکیده
We propose a method for the Distributed Assessment of the Closeness CEntrality Ranking (DACCER) in complex networks. DACCER computes centrality based only on localized information restricted to a given neighborhood around each node, thus not requiring full knowledge of the network topology. We show that the node centrality ranking computed by DACCER is highly correlated with the node ranking based on the traditional closeness centrality, which requires high computational costs and full knowledge of the network topology. This outcome is quite useful given the vast potential applicability of closeness centrality, which is seldom applied to large-scale networks due to its high computational costs. Results indicate that DACCER is simple, yet efficient, in assessing node centrality while allowing a distributed implementation that contributes to its performance. This also contributes to the practical applicability of DACCER in the analysis of large-scale complex networks, as we show using in our experimental evaluation both synthetically generated networks and traces of real-world networks of different kinds and scales.
منابع مشابه
A Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications
A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...
متن کاملDANCE: A Framework for the Distributed Assessment of Network Centralities
We propose a method for the Distributed Assessment of Network CEntrality (DANCE) in complex networks. DANCE attributes to each node a volume-based centrality computed using only localized information, thus not requiring knowledge of the full network topology. We show DANCE is simple, yet efficient, in assessing node centrality in a distributed way. Our proposal also provides a way for locating ...
متن کاملAn Estimated Closeness Centrality Ranking Algorithm and Its Performance Analysis in Large-Scale Workflow-supported Social Networks
This paper implements an estimated ranking algorithm of closeness centrality measures in large-scale workflow-supported social networks. The traditional ranking algorithms for large-scale networks have suffered from the time complexity problem. The larger the network size is, the bigger dramatically the computation time becomes. To solve the problem on calculating ranks of closeness centrality ...
متن کاملDistance entropy cartography characterises centrality in complex networks
We introduce distance entropy as a measure of homogeneity in the distribution of path lengths between a given node and its neighbours in a complex network. Distance entropy defines a new centrality measure whose properties are investigated for a variety of synthetic network models. By coupling distance entropy information with closeness centrality, we introduce a network cartography which allow...
متن کاملRanking the spreading influence in complex networks
Identifying the node spreading influence in networks is an important task to optimally use the network structure and ensure the more efficient spreading in information. In this paper, by taking into account the shortest distance between a target node and the node set with the highest k-core value, we present an improved method to generate the ranking list to evaluate the node spreading influenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Networks
دوره 57 شماره
صفحات -
تاریخ انتشار 2013