Cost-Sensitive Deep Learning with Layer-Wise Cost Estimation
نویسندگان
چکیده
While deep neural networks have succeeded in several visual applications, such as object recognition, detection, and localization, by reaching very high classification accuracies, it is important to note that many real-world applications demand varying costs for different types of misclassification errors, thus requiring cost-sensitive classification algorithms. Current models of deep neural networks for cost-sensitive classification are restricted to some specific network structures and limited depth. In this paper, we propose a novel framework that can be applied to deep neural networks with any structure to facilitate their learning of meaningful representations for cost-sensitive classification problems. Furthermore, the framework allows endto-end training of deeper networks directly. The framework is designed by augmenting auxiliary neurons to the output of each hidden layer for layer-wise cost estimation, and including the total estimation loss within the optimization objective. Experimental results on public benchmark visual data sets with two cost information settings demonstrate that the proposed framework outperforms state-of-the-art cost-sensitive deep learning models.
منابع مشابه
Locally Adaptive Learning Loss for Semantic Image Segmentation
We propose a novel locally adaptive learning estimator for enhancing the interand intradiscriminative capabilities of Deep Neural Networks, which can be used as improved loss layer for semantic image segmentation tasks. Most loss layers compute pixel-wise cost between feature maps and ground truths, ignoring spatial layouts and interactions between neighboring pixels with same object category, ...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملUnderstanding Autoencoders with Information Theoretic Concepts
Despite their great success in practical applications, there is still a lack of theoretical and systematic methods to analyze deep neural networks. In this paper, we illustrate an advanced information theoretic methodology to understand the dynamics of learning and the design of autoencoders, a special type of deep learning architectures that resembles a communication channel. By generalizing t...
متن کاملConstruction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...
متن کاملTrain Feedfoward Neural Network with Layer-wise Adaptive Rate via Approximating Back-matching Propagation
Stochastic gradient descent (SGD) has achieved great success in training deep neural network, where the gradient is computed through backpropagation. However, the back-propagated values of different layers vary dramatically. This inconsistence of gradient magnitude across different layers renders optimization of deep neural network with a single learning rate problematic. We introduce the back-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.05134 شماره
صفحات -
تاریخ انتشار 2016