From Random Walks to Critical Phenomena and Conformal Field Theory

نویسنده

  • Benjamin Hsu
چکیده

In class, we approached critical phenomena from the view point of correlation functions and discussed renormalization group methods for obtaining values of critical exponents. Here I discuss a parallel idea that studies critical phenomena from properties of random curves which form the domain walls of the critical system. It will be shown that such random curves obey a stochastic differential equation which can be regarded as a conformal mapping. By studying the behavior of these conformal maps, such as the likelihood that a random walk connects two points or encompasses a certain point, one can make connections with quantities in conformal field theory. In addition, it will be shown that the critical exponent can be regarded as the diffusion constant for such random walks. This is a new field which has recently attracted the attention of theoretical physicists and many questions still remain. A general overview is presented here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 2 Conformal Invariance in Percolation , Self - Avoiding Walks , and Related Problems ∗

Over the years, problems like percolation and self-avoiding walks have provided important testing grounds for our understanding of the nature of the critical state. I describe some very recent ideas, as well as some older ones, which cast light both on these problems themselves and on the quantum field theories to which they correspond. These ideas come from conformal field theory, Coulomb gas ...

متن کامل

2 7 Se p 20 02 Conformal Invariance in Percolation , Self - Avoiding Walks , and Related Problems ∗

Over the years, problems like percolation and self-avoiding walks have provided important testing grounds for our understanding of the nature of the critical state. I describe some very recent ideas, as well as some older ones, which cast light both on these problems themselves and on the quantum field theories to which they correspond. These ideas come from conformal field theory, Coulomb gas ...

متن کامل

Introduction to Schramm-Loewner evolution and its application to critical systems

In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...

متن کامل

Correlation Functions for Some Conformal Theories on Riemann Surfaces

We discuss the geometrical connection between 2D conformal field theories, random walks on hyperbolic Riemann surfaces and knot theory. For the wide class of CFT’s with monodromies being the discrete subgroups of SL(2,R I ) the determination of four–point correlation functions are related to construction of topological invariants for random walks on multipunctured Riemann surfaces.

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008