Orthogonal designs of order 32 and 64 via computational algebra
نویسندگان
چکیده
منابع مشابه
Some new orthogonal designs in orders 32 and 40
A result of Robinson states that no OD(n; 1, 1, 1, 1, 1, n− 5) exists for n > 40. We complement this result by showing the existence of OD(n; 1, 1, 1, 1, 1, n− 5) for n = 32, 40. This includes a resolution to an old open problem regarding orthogonal designs of order 32 as well. We also obtain a number of new orthogonal designs of order 32.
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملFixed point theory in generalized orthogonal metric space
In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.
متن کاملQuaternion orthogonal designs from complex companion designs
The success of applying generalized complex orthogonal designs as space–time block codes recently motivated the definition of quaternion orthogonal designs as potential building blocks for space–timepolarization block codes. This paper offers techniques for constructing quaternion orthogonal designs via combinations of specially chosen complex orthogonal designs. One technique is used to build ...
متن کاملA Deterministic Multiple Key Space Scheme for Wireless Sensor Networks via Combinatorial Designs
The establishing of a pairwise key between two nodes for encryption in a wireless sensor network is a challenging issue. To do this, we propose a new deterministic key pre-distribution scheme which has modified the multiple key space scheme (MKSS). In the MKSS, the authors define two random parameters to make better resilience than existing schemes. Instead of a random selection of these parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 39 شماره
صفحات -
تاریخ انتشار 2007