A Recurrent Cooperative/Competitive Field for Segmentation of Magnetic Resonance Brain Imagery
نویسندگان
چکیده
The Grey-White Decision Network is introduced as an application of an on-center, off-surround recurrent cooperative/competitive network for segmentation of magnetic resonance imaging (MRI) brain images. The three layer dynamical system relaxes into a solution where each pixel is labeled as either grey matter, white matter, or "other" matter by considering raw input intensity, edge information, and neighbor interactions. This network is presented as an example of applying a recurrent cooperative/competitive field (RCCF) to a problem with multiple conflicting constraints. Simulations of the network and its phase plane analysis are presented.
منابع مشابه
Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملStudy of Various Methods for Brain Tumour Segmentation from MRI Images
Segmentation means segregating area of interest from the image. The aim of image segmentation is to cluster the pixels into salient image regions i.e. regions corresponding to individual surfaces, objects, or natural parts of objects. Automatic Brain tumour segmentation is a sensitive step in medical field. A significant medical informatics task is to perform the indexing of the patient databas...
متن کاملAutomatic brain tissue segmentation in MR images using Random Forests and Conditional Random Fields.
BACKGROUND The segmentation of brain tissue into cerebrospinal fluid, gray matter, and white matter in magnetic resonance imaging scans is an important procedure to extract regions of interest for quantitative analysis and disease assessment. Manual segmentation requires skilled experts, being a laborious and time-consuming task; therefore, reliable and robust automatic segmentation methods are...
متن کامل