Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.

نویسندگان

  • Olivier Berton
  • Colleen A McClung
  • Ralph J Dileone
  • Vaishnav Krishnan
  • William Renthal
  • Scott J Russo
  • Danielle Graham
  • Nadia M Tsankova
  • Carlos A Bolanos
  • Maribel Rios
  • Lisa M Monteggia
  • David W Self
  • Eric J Nestler
چکیده

Mice experiencing repeated aggression develop a long-lasting aversion to social contact, which can be normalized by chronic, but not acute, administration of antidepressant. Using viral-mediated, mesolimbic dopamine pathway-specific knockdown of brain-derived neurotrophic factor (BDNF), we showed that BDNF is required for the development of this experience-dependent social aversion. Gene profiling in the nucleus accumbens indicates that local knockdown of BDNF obliterates most of the effects of repeated aggression on gene expression within this circuit, with similar effects being produced by chronic treatment with antidepressant. These results establish an essential role for BDNF in mediating long-term neural and behavioral plasticity in response to aversive social experiences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress-Induced Depressive Behaviors.

BACKGROUND Previous work has shown that chronic social defeat stress (CSDS) induces increased phasic firing of ventral tegmental area (VTA) dopamine (DA) neurons that project to the nucleus accumbens (NAc) selectively in mice that are susceptible to the deleterious effects of the stress. In addition, acute optogenetic phasic stimulation of these neurons promotes susceptibility in animals expose...

متن کامل

Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action.

We previously reported that the activity of mesolimbic dopamine neurons of the ventral tegmental area (VTA) is a key determinant of behavioral susceptibility vs resilience to chronic social defeat stress. However, this was based solely on ex vivo measurements, and the in vivo firing properties of VTA dopamine neurons in susceptible and resilient mice, as well as the effects of antidepressant tr...

متن کامل

Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice.

Various kinds of stress are thought to precipitate psychiatric disorders, such as major depression. Whereas studies in rodents have suggested a critical role of medial prefrontal cortex (mPFC) in stress susceptibility, the mechanism of how stress susceptibility is determined through mPFC remains unknown. Here we show a critical role of prostaglandin E(2) (PGE(2)), a bioactive lipid derived from...

متن کامل

SKF83959 Produces Antidepressant Effects in a Chronic Social Defeat Stress Model of Depression through BDNF-TrkB Pathway

BACKGROUND SKF83959 stimulates the phospholipase Cβ/inositol phosphate 3 pathway, resulting in the activation of Ca(2+)/calmodulin-dependent kinase IIα, which affects the synthesis of brain-derived neurotrophic factor, a neurotrophic factor critical for the pathophysiology of depression. Previous reports showed that SKF83959 elicited antidepressant activity in the forced swim test and tail susp...

متن کامل

A single social defeat induces short-lasting behavioral sensitization to amphetamine.

Repeated, intermittent exposure to psychostimulants or stressors results in long-lasting, progressive sensitization of the behavioral effects of a subsequent amphetamine (AMPH) challenge. Although behavioral sensitization has also been observed following a single drug pretreatment, the sensitizing potential of a single exposure to stress is not clear. Both drug- and stress-induced sensitization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 311 5762  شماره 

صفحات  -

تاریخ انتشار 2006