Energy identity of approximate biharmonic maps to Riemannian manifolds and its application

نویسندگان

  • Changyou Wang
  • Shenzhou Zheng
چکیده

We consider in dimension four weakly convergent sequences of approximate biharmonic maps to a Riemannian manifold with bi-tension fields bounded in L for p > 4 3 . We prove an energy identity that accounts for the loss of hessian energies by the sum of hessian energies over finitely many nontrivial biharmonic maps on R. As a corollary, we obtain an energy identity for the heat flow of biharmonic maps at time infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of F-biharmonic maps

This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.

متن کامل

Energy identity for a class of approximate biharmonic maps into sphere in dimension four

We consider in dimension four weakly convergent sequences of approximate biharmonic maps into sphere with bi-tension fields bounded in L for some p > 1. We prove an energy identity that accounts for the loss of Hessian energies by the sum of Hessian energies over finitely many nontrivial biharmonic maps on R.

متن کامل

Biharmonic Hypersurfaces in Riemannian Manifolds

We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

ON f -BI-HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

A. Both bi-harmonic map and f -harmonic map have nice physical motivation and applications. In this paper, by combination of these two harmonic maps, we introduce and study f -bi-harmonic maps as the critical points of the f -bi-energy functional 1 2 ∫ M f |τ(φ)| dvg. This class of maps generalizes both concepts of harmonic maps and biharmonic maps. We first derive the f -biharmonic map ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011