Thiol oxidation and loss of mitochondrial complex I precede excitatory amino acid-mediated neurodegeneration.

نویسندگان

  • K Sriram
  • S K Shankar
  • M R Boyd
  • V Ravindranath
چکیده

Human ingestion of "chickling peas" from the plant Lathyrus sativus, which contains an excitatory amino acid, L-BOAA (L-beta-N-oxalylamino-L-alanine), leads to a progressive corticospinal neurodegenerative disorder, neurolathyrism. Exposure to L-BOAA, but not its optical enantiomer D-BOAA, causes mitochondrial dysfunction as evidenced by loss of complex I activity in vitro in male mouse brain slices and in vivo in selected regions of mouse CNS (lumbosacral cord and motor cortex). Loss of complex I activity in lumbosacral cord after L-BOAA administration to mice was accompanied by concurrent loss of glutathione. The inhibited complex I activity in mitochondria isolated from lumbosacral cord of animals treated with L-BOAA rebounded after incubation with the thiol-reducing agent dithiothreitol, indicating that oxidation of protein thiols to disulfides was responsible for enzyme inhibition. The inhibition of complex I could be abolished by pretreatment with antioxidant thiols such as glutathione ester and alpha-lipoic acid. Chronic treatment of male mice, but not female mice, with L-BOAA resulted in loss of complex I activity and vacuolation and dendritic swelling of neurons in the motor cortex and lumbar cord, paralleling the regionality of the aforementioned biochemical effects on CNS mitochondria. These results support the view that thiol oxidation and concomitant mitochondrial dysfunction (also implicated in other neurodegenerative disorders), occurring downstream of glutamate receptor activation by L-BOAA, are primary events leading to neurodegeneration. Maintenance of protein thiol homeostasis by thiol delivery agents could potentially offer protection against excitotoxic insults such as those seen with L-BOAA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury.

Mitochondrial dysfunction involving electron transport components is implicated in the pathogenesis of several neurodegenerative disorders and is a critical event in excitotoxicity. Excitatory amino acid L-beta-N-oxalylamino-L-alanine (L-BOAA), causes progressive corticospinal neurodegeneration in humans. In mice, L-BOAA triggers glutathione loss and protein thiol oxidation that disrupts mitoch...

متن کامل

Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity.

Oxidative stress, excitotoxicity and mitochondrial dysfunction play synergistic roles in neurodegeneration. Maintenance of thiol homeostasis is important for normal mitochondrial function and dysregulation of protein thiol homeostasis by oxidative stress leads to mitochondrial dysfunction and neurodegeneration. We examined the critical roles played by the antioxidant, non-protein thiol, glutath...

متن کامل

Knockdown of Cytosolic Glutaredoxin 1 Leads to Loss of Mitochondrial Membrane Potential: Implication in Neurodegenerative Diseases

Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1), a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 24  شماره 

صفحات  -

تاریخ انتشار 1998