Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing.

نویسندگان

  • M Shoykhet
  • D Doherty
  • D J Simons
چکیده

Within the rat whisker-to-barrel pathway, local circuits in cortical layer IV are more sensitive to the initial timing of deflection-evoked thalamic responses than to the total number of spikes comprising them. Because thalamic response timing better reflects whisker deflection velocity than amplitude, cortical neurons are more responsive to the former than the latter. The aim of this study is to determine how deflection velocity and amplitude may be encoded by the primary afferent neurons innervating the vibrissae. Responses of 81 extracellularly recorded trigeminal ganglion neurons (60 slowly and 21 rapidly adapting) were studied using controlled whisker stimuli identical to those used previously to investigate the velocity and amplitude sensitivities of thalamic and cortical neurons. For either slowly (SA) or rapidly adapting (RA) neurons, velocity is reflected by both response magnitude, measured as the total number of evoked spikes/stimulus, and initial firing rate, measured as the number of spikes discharged during the first 2 ms of the response. Deflection amplitude, on the other hand, is represented only by the SA population in their response magnitudes. Thus, in both populations initial firing rates unambiguously reflect deflection velocity. Together with previous findings, results demonstrate that information about deflection velocity is preserved throughout the whisker-to-barrel pathway by central circuits sensitive to initial response timing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response properties of mouse trigeminal ganglion neurons.

We used controlled whisker deflections to examine the response properties of 208 primary afferent neurons in the trigeminal ganglion of adult mice. Proportions of rapidly adapting (RA, 47%) and slowly adapting (SA, 53%) neurons were equivalent, and most cells had low or no spontaneous activity. We quantified angular tuning and sensitivity to deflection amplitude and velocity. Both RA and SA uni...

متن کامل

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

اثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورون‌های لایه IV و V‌‌‌ قشر بارل (بشکه‌ای) در موش صحرایی

Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...

متن کامل

Effect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats

Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...

متن کامل

Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex.

Local circuitry within layer IV whisker-related barrels is preferentially sensitive to thalamic population firing synchrony, and neurons respond most vigorously to stimuli, such as high-velocity whisker deflections, that evoke it. Field potential recordings suggest that thalamic barreloid neurons having similar angular preferences fire synchronously. To examine whether angular tuning of cortica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Somatosensory & motor research

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2000