Equivariant Local Cyclic Homology and the Equivariant Chern-Connes Character
نویسندگان
چکیده
We define and study equivariant analytic and local cyclic homology for smooth actions of totally disconnected groups on bornological algebras. Our approach contains equivariant entire cyclic cohomology in the sense of Klimek, Kondracki and Lesniewski as a special case and provides an equivariant extension of the local cyclic theory developped by Puschnigg. As a main result we construct a multiplicative Chern-Connes character for equivariant KK-theory with values in equivariant local cyclic homology. 2000 Mathematics Subject Classification: 19D55, 19K35, 19L47, 46A17
منابع مشابه
Equivariant K-theory, twisted Chern character, index pairings, Poincaré duality and orientation for the standard Podleś sphere
The noncommutative spin geometry of the standard Podleś sphere is analyzed and known results are extended by establishing Poincaré duality and orientability. In the discussion of orientability, Hochschild homology is replaced by a twisted version which avoids the dimension drop. The twisted Hochschild cycle representing an orientation is related to the volume form of the distinguished covariant...
متن کاملOn the noncommutative spin geometry of the standard Podleś sphere and index computations
The purpose of the paper is twofold: First, known results of the noncommutative spin geometry of the standard Podleś sphere are extended by discussing Poincaré duality and orientability. In the discussion of orientability, Hochschild homology is replaced by a twisted version which avoids the dimension drop. The twisted Hochschild cycle representing an orientation is related to the volume form o...
متن کاملChern characters for proper equivariant homology theories and applications to K- and L-theory
We construct for an equivariant homology theory for proper equivariant CW -complexes an equivariant Chern character under certain conditions. This applies for instance to the sources of the assembly maps in the Farrell-Jones Conjecture with respect to the family F of finite subgroups and in the Baum-Connes Conjecture. Thus we get an explicit calculation of Q ⊗Z Kn(RG) and Q ⊗Z Ln(RG) for a comm...
متن کاملChern Character for Totally Disconnected Groups
In this paper we construct a bivariant Chern character for the equivariant KK-theory of a totally disconnected group with values in bivariant equivariant cohomology in the sense of Baum and Schneider. We prove in particular that the complexified left hand side of the Baum-Connes conjecture for a totally disconnected group is isomorphic to cosheaf homology. Moreover, it is shown that our transfo...
متن کاملThe equivariant index theorem in entire cyclic cohomology
Let G be a locally compact group acting smoothly and properly by isometries on a complete Riemannian manifoldM , with compact quotient GnM . There is an assembly map W K .M/ ! K .B/ which associates to any Gequivariant K-homology class onM , an element of the topological K-theory of a suitable Banach completion B of the convolution algebra of continuous compactly supported functions on G. The a...
متن کامل