Occurrence, repetition and matching of patterns in the low temperature Ising model

نویسندگان

  • J. R. Chazottes
  • F. Redig
چکیده

We continue our study of exponential law for occurrences and returns of patterns in the context of Gibbsian random fields. For the low temperature plus phase of the Ising model, we prove exponential laws with error bounds for occurrence, return, waiting and matching times. Moreover we obtain a Poisson law for the number of occurrences of large cylindrical events and a Gumbel law for the maximal overlap between two independent copies. As a by-product, we derive precise fluctuation results for the logarithm of waiting and return times. The main technical tool we use, in order to control mixing, is disagreement percolation. Key-words: occurrence and repetition of patterns, low temperature Ising model, disagreement percolation, exponential law, Poisson law, Gumbel law, large deviations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 31 20 08 v 2 1 7 Ju n 20 05 Occurrence , repetition and matching of patterns in the low - temperature Ising model

We continue our study of the exponential law for occurrences and returns of patterns in the context of Gibbsian random fields. For the low-temperature plus-phase of the Ising model, we prove exponential laws with error bounds for occurrence, return, waiting and matching times. Moreover we obtain a Poisson law for the number of occurrences of large cylindrical events and a Gumbel law for the max...

متن کامل

X iv : m at h - ph / 0 31 20 08 v 1 1 D ec 2 00 3 Occurence , repetition and matching of patterns in the low - temperature Ising model

We continue our study of exponential law for occurrences and returns of patterns in the context of Gibbsian random fields. For the low temperature plus phase of the Ising model, we prove exponential laws with error bounds for occurrence, return, waiting and matching times. Moreover we obtain a Poisson law for the number of occurrences of large cylindrical events and a Gumbel law for the maximal...

متن کامل

Exponential distribution for the occurrence of rare patterns in Gibbsian random fields

We study the distribution of the occurrence of rare patterns in sufficiently mixing Gibbs random fields on the lattice Z, d ≥ 2. A typical example is the high temperature Ising model. This distribution is shown to converge to an exponential law as the size of the pattern diverges. Our analysis not only provides this convergence but also establishes a precise estimate of the distance between the...

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017