Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats.
نویسندگان
چکیده
Projections of sacrocaudal afferents (SCA) onto lumbar pattern generators were studied in isolated spinal cords of neonatal rats. A locomotor-like pattern could be produced by SCA stimulation in the majority of the preparations. The SCA-induced lumbar rhythm was abolished after blocking synaptic transmission in the sacrococcygeal (SC) cord by bathing its segments in a low-calcium, high-magnesium artificial cerebrospinal fluid and restored when the synaptic block was alleviated by local application of calcium onto specific SC segments prior to SCA stimulation. Thus the SCA evoked lumbar rhythm involves synaptic activation of relay neurons in the SC cord. Functional activation of these relays depends on non-N-methyl-D-aspartate (NMDA) receptors because the lumbar rhythm was abolished when the non-NMDA receptor antagonist CNQX was added to the SC cord. By contrast, pharmacological block of the rhythmicity in the SC cord by specific antagonists of NMDA receptors and alpha1 and alpha2 adrenoceptors did not impair the SCA-induced lumbar rhythm. Midsagittal splitting experiments of parts of the SC and lumbar cord revealed that crossed and uncrossed ascending/propriospinal pathways are coactivated by SCA stimulation. We suggest that these pathways ascend onto the thoracolumbar cord through the lateral, ventrolateral, and ventral funiculi, because a complete block of the lumbar rhythm could only be obtained with a bilateral interruption of all of these funiculi. The relevance of our findings to the neural control of the rhythmogenic networks in the spinal cord is discussed.
منابع مشابه
Sacrocaudal afferents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats.
The ability of mammalian spinal cords to generate rhythmic motor behavior in nonlimb moving segments was examined in isolated spinal cords of neonatal rats. Stimulation of sacrocaudal afferents (SCA) induced alternating left-right bursts in lumbosacral efferents and in tail muscles. On each side of the tail, flexors, extensors, and abductors were coactive during each cycle of activity. This rhy...
متن کاملDifferential effects of opioids on sacrocaudal afferent pathways and central pattern generators in the neonatal rat spinal cord.
The effects of opioids on sacrocaudal afferent (SCA) pathways and the pattern-generating circuitry of the thoracolumbar and sacrocaudal segments of the spinal cord were studied in isolated spinal cord and brain stem-spinal cord preparations of the neonatal rat. The locomotor and tail moving rhythm produced by activation of nociceptive and nonnociceptive sacrocaudal afferents was completely bloc...
متن کاملCharacterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.
Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funicu...
متن کاملLocomotor networks are targets of modulation by sensory transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 channels.
It is well recognized that proprioceptive afferent inputs can control the timing and pattern of locomotion. C and Adelta afferents can also affect locomotion but an unresolved issue is the identity of the subsets of these afferents that encode defined modalities. Over the last decade, the transient receptor potential (TRP) ion channels have emerged as a family of non-selective cation conductanc...
متن کاملThe sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord
Identification of neural networks and pathways involved in activation and modulation of spinal central pattern generators (CPGs) in the absence of the descending control from the brain is important for further understanding of neural control of movement and for developing innovative therapeutic approaches to improve the mobility of spinal cord injury patients. Activation of the hindlimb innerva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2003