The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention

نویسندگان

  • Marek Bekisz
  • Wojciech Bogdan
  • Anaida Ghazaryan
  • Wioletta J. Waleszczyk
  • Ewa Kublik
  • Andrzej Wróbel
  • Manuel S. Malmierca
چکیده

Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional connectivity between ventral and dorsal frontoparietal networks underlies stimulus-driven and working memory-driven sources of visual distraction

We investigate the neural basis of two routes to visual distraction: salient stimuli capture attention in a bottom-up fashion and the reappearance of task-irrelevant items that are being actively maintained in working memory can lead to distraction via top-down, but automatic, guidance of attention. Bottom-up, stimulus-driven distraction has typically been associated with a ventral network inco...

متن کامل

stimulus - driven and working memory - driven sources of visual distraction

We investigate the neural basis of two routes to visual distraction: salient stimuli capture attention in a bottom-up fashion, and the reappearance of task-irrelevant items that are being actively maintained in working memory can lead to distraction via top-down, but automatic, guidance of attention. Bottom-up, stimulus-driven distraction has typically been associated with a ventral network inc...

متن کامل

driven and working memory - driven sources of visual distraction

We investigate the neural basis of two routes to visual distraction: salient stimuli capture attention in a bottom-up fashion, and the reappearance of task-irrelevant items that are being actively maintained in working memory can lead to distraction via top-down, but automatic, guidance of attention. Bottom-up, stimulus-driven distraction has typically been associated with a ventral network inc...

متن کامل

Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task.

Speed and accuracy of motor responses to lateralized stimuli are influenced by the spatial overlap between stimulus location and required response. Responses showing high spatial overlap with peripheral cues benefit from a bottom-up driven enhancement of attention to the respective location, whereas low overlap requires top-down modulated reorienting of resources. Here we investigated the inter...

متن کامل

visual distraction

We investigate the neural basis of two routes to visual distraction: salient stimuli capture attention in a bottom-up fashion, and the reappearance of task-irrelevant items that are being actively maintained in working memory can lead to distraction via top-down, but automatic, guidance of attention. Bottom-up, stimulus-driven distraction has typically been associated with a ventral network inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016