The Restricted Burnside Problem
نویسنده
چکیده
In 1902 William Burnside [5] wrote 'A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite, while the order of every operation it contains is finite'. In modern terminology the most general form of the problem is 'can a finitely generated group be infinite while every element in the group has finite order?'. This question was answered in 1964 by Golod [8], who constructed finitely generated infinite /^-groups. The version of the problem which has attracted most interest can be stated in the following way. Let Fd be the free group of rank d, and let N be the subgroup of Fd generated by {g :gsFd}. Then let B(d, n) = FJN. The group B(d, n) is known as the d generator Burnside group of exponent n, and any d generator group of exponent n is a homomorphic image of B(d,n). The Burnside problem (as it has come to be known) is the following:
منابع مشابه
The two generator restricted Burnside group of exponent five
In 1902 Burnside [4] wrote "A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite while the order of every operation it contains is finite". This leads to the following problem, now called the Burnside problem: "If a group is finitely generated and of finite exponent, is it finite?" This is a very difficult question so a weaker form know...
متن کاملOn the Restricted Burnside Problem
After many unsuccessful attempts to obtain a proof in the late 30s-early 40s the following weaker version of The Burnside Problem was studied: Is it true that there are only finitely many 7??-generated finite groups of exponent nl In other words the question is whether there exists a universal finite m-generated group of exponent n having all other finite m-generated groups of exponent n as hom...
متن کاملOn Zel'manov's solution of the restricted Burnside problem
We give an outline of the main steps in Zel'manov's solution of the restricted Burnside problem. We show how one of the key steps can be simpli®ed by using the multilinear identities satis®ed by the associated Lie rings of groups of prime-power exponent.
متن کاملOn the Burnside Problem for Groups of Even Exponent
The Burnside problem about periodic groups asks whether any finitely generated group with the law x ≡ 1 is necessarily finite. This is proven only for n ≤ 4 and n = 6. A negative solution to the Burnside problem for odd n ≫ 1 was given by Novikov and Adian. The article presents a discussion of a recent solution of the Burnside problem for even exponents n ≫ 1 and related results. 1991 Mathemati...
متن کاملThe Burnside Groups and Small Cancellation Theory
In a pair of recent articles, the author develops a general version of small cancellation theory applicable in higher dimensions ([5]), and then applies this theory to the Burnside groups of sufficiently large exponent ([6]). More specifically, these articles prove that the free Burnside groups of exponent n ≥ 1260 are infinite groups which have a decidable word problem. The structure of the fi...
متن کامل