GABAergic Circuit Development and Its Implication for CNS Disorders

نویسندگان

  • Graziella Di Cristo
  • Tommaso Pizzorusso
  • Laura Cancedda
  • Evelyne Sernagor
چکیده

The function of the cerebral cortex requires the coordinated action of two major neuronal subtypes, the glutamatergic projection neurons and the GABAergic interneurons. Although , in terms of numbers, GABAergic interneurons represent a minor cell population compared to glutamater-gic neurons in the neocortex, they play an important role in modulating network dynamics of neocortical circuits. Indeed, GABAergic interneurons have been shown to control neuronal excitability and integration, and they have been implicated in the generation of temporal synchrony and oscillatory behavior among networks of pyramidal neu-rons. Such oscillations within and across neural systems are believed to serve various complex functions, such as perception, movement initiation, and memory. Recently, the development of GABAergic inhibition has been shown to be a key determinant for critical period plasticity of cortical circuits. Critical periods represent heightened epochs of brain plasticity, during which experience can produce permanent , large-scale changes in neuronal circuits. Experience-dependent refinement of neural circuits has been described in many regions within the CNS, suggesting it is a fundamental mechanism for normal vertebrate CNS development. By regulating the onset and closure of critical periods, GABAer-gic interneurons may influence how experience shapes brain wiring during early life and adolescence. Considering the multifaceted role played by GABAergic cells in the development, function, and plasticity of neural circuits, it is not surprising that alterations in the development of GABAergic circuits per se have been implicated in various neurodevelopmental and psychiatric disorders such as schizophrenia, autism, and epilepsy. However, how modification of GABAergic circuit development contributes to specific pathologies is largely unknown. Furthermore, GABA mimetic drugs, such as benzodiazepines and certain antiepileptic drugs, are widely used in clinical practice, but whether and to what extent these drugs cause deleterious effect on the developing brain is still not clear. A better comprehension of the mechanisms underlying the development and plasticity of GABAergic interneurons will likely indicate which cellular substrates might be affected in neurodevelop-mental disorders. At the same time, identifying the genetics variants implicated in these disorders may generate major new insights into the normal and pathological function of GABAergic circuits. Our understanding of GABAergic interneurons function is challenged by their startling heterogeneity; indeed, different subtypes of interneurons display distinct morphology, physiological properties, connectivity patterns, and biochemical constituents. Recent technical advances have significantly accelerated progress in this field. In particular,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fragile X syndrome: the GABAergic system and circuit dysfunction.

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, sensory hypersensitivity, and high incidences of autism spectrum disorders and epilepsy. These phenotypes are suggestive of defects in neural circuit development and imbalances in excitatory glutamatergic and inhibitory GABAergic neurotransmission. While alterations in excitatory synapse function...

متن کامل

Molecular Mechanisms Underlying Activity-Dependent GABAergic Synapse Development and Plasticity and Its Implications for Neurodevelopmental Disorders

GABAergic interneurons are critical for the normal function and development of neural circuits, and their dysfunction is implicated in a large number of neurodevelopmental disorders. Experience and activity-dependent mechanisms play an important role in GABAergic circuit development, also recent studies involve a number of molecular players involved in the process. Emphasizing the molecular mec...

متن کامل

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

GABAergic signaling in the developing cerebellum.

In the adult central nervous system (CNS), GABA is a predominant inhibitory neurotransmitter that regulates glutamatergic activity. Recent studies have revealed that GABA serves as an excitatory transmitter in the immature CNS and acts as a trophic factor for brain development. Furthermore, synaptic transmission by GABA is also involved in the expression of higher brain functions, such as memor...

متن کامل

Ginseng Use in Medicine: Perspectives on CNS Disorders

Ginseng, the root of Panax species, is a well-known folk medicine. It has been used as traditional herbal medicine in China, Korea and Japan for thousands of years and today is a popular and worldwide used natural medicine. The active ingredients of ginseng are ginsenosides which are also called ginseng saponins. Recently, there is increasing evidence in the literature on the pharmacological an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011