Every Odd Perfect Number Has a Prime Factor Which Exceeds

نویسنده

  • GRAEME L. COHEN
چکیده

It is proved here that every odd perfect number is divisible by a prime greater than 106.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every odd perfect number has a prime factor which exceeds 106

It is proved here that every odd perfect number is divisible by a prime greater than 106.

متن کامل

On the Largest Prime Divisor of an Odd Perfect Number . II

It is proved here that every odd perfect number has a prime factor greater

متن کامل

The third largest prime divisor of an odd perfect number exceeds one hundred

Let σ(n) denote the sum of positive divisors of the natural number n. Such a number is said to be perfect if σ(n) = 2n. It is well known that a number is even and perfect if and only if it has the form 2p−1(2p − 1) where 2p − 1 is prime. It is unknown whether or not odd perfect numbers exist, although many conditions necessary for their existence have been found. For example, Cohen and Hagis ha...

متن کامل

Odd perfect numbers have a prime factor exceeding 108

Jenkins in 2003 showed that every odd perfect number is divisible by a prime exceeding 107. Using the properties of cyclotomic polynomials, we improve this result to show that every perfect number is divisible by a prime exceeding 108.

متن کامل

Odd Perfect Numbers Have a Prime Factor Exceeding

It is proved that every odd perfect number is divisible by a prime greater than 107.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998