Friction and stem stiffness affect dynamic interface motion in total hip replacement.

نویسندگان

  • J H Kuiper
  • R Huiskes
چکیده

Large cyclic movements between the femoral stem and bone during the first weeks after total hip arthroplasty may hamper bone ingrowth and adversely affect the eventual success of the arthroplasty. Little is known, however, about the magnitude of the motions and its relationship to design and surgical factors. A two-dimensional finite element model of a cementless prosthesis inserted into the proximal femur was constructed to study the effects of two mechanical variables--the stiffness of the implant and the coefficient of friction between bone and implant--on the magnitude of the motions. We investigated the influences of these variables on the subsidence of the prosthesis, the magnitudes of the cyclic motions, and the level of the interface stresses. The presence of friction reduced cyclic motions by about 85% compared with a frictionless interface. Once friction was assumed, varying the coefficient of friction had little effect. The effect of friction on the interface stress state and gross subsidence of the prosthesis was not as great as on cyclic motion. Implant stiffness also affected the magnitudes and distributions of the cyclic motions along the interface. A flexible stem generated motions about three to four times larger proximally than those of a stiff stem, which generated larger motions distally. The influence of stem stiffness on interface stresses and prosthetic subsidence was less than on cyclic motion. The location of the peak shear stresses at the interface around a bonded prosthesis corresponded to the location where cyclic interface motion was maximal for an unbonded prosthesis. However, no direct relationship was found between the magnitudes of peak stresses and the amplitudes of cyclic motions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical effects of stem cement interface characteristics in total hip replacement.

Stem cement debonding is 1 of the most common forms of fixation failure and is thought to be a prelude to gross loosening of a total hip reconstruction. However, the immediate consequences of debonding remains a matter of controversy. The dynamic effects of stem cement debonding in total hip reconstruction were analyzed using 3-dimensional finite element techniques. Stem cement interface condit...

متن کامل

The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface.

After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. ...

متن کامل

Total Hip Replacement Revision in a Single Brand Small Cementless Stem – Our Experience after the Findings of the National Joint Registry

Background: Cementless total hip replacement is the common THR performed in England, Wales, Northern Irelandand the Isle of Man. The Corail stem is the most popular cementless implant and has a ODEP 10A rating. Review ofits performance in the registry identified an increase rate of revision amongst the smaller stem sizes. However, claritywas not provided on the explanation for this finding. We ...

متن کامل

Mathematical optimization of elastic properties: application to cementless hip stem design.

The designer of a cementless hip stem in total hip replacement must find a balance between two conflicting demands. On the one hand, a stiff stem shields the surrounding bone from mechanical loading (stress shielding), which may lead to bone loss, particularly around the proximal part of the stem. Reducing the stem stiffness decreases the amount of stress shielding and hence the amount of bone ...

متن کامل

A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions

Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 1996