In vitro zonation and toxicity in a hepatocyte bioreactor.
نویسندگان
چکیده
The complex architecture of the liver is intertwined with its response to xenobiotic compounds. In particular, hepatocyte subpopulations are distributed along the sinusoid in zones 1 to 3, leading to prototypical "periportal" and "centrilobular" patterns of cell death in response to a toxic insult. In vitro models that more closely represent these zones of sub-specialization may therefore be valuable for the investigation of hepatic physiology and pathophysiology. We have established a perfused hepatocyte bioreactor that imposes physiologic oxygen gradients on co-cultures of rat hepatocytes and non-parenchymal cells, thereby producing an in vitro model of zonation. In order to predict and control oxygen gradients, oxygen transport in a parallel-plate bioreactor containing co-cultures was first mathematically modeled and experimentally validated. Co-cultures exposed to these physiologic oxygen gradients demonstrated regionally heterogeneity of CYP2B and CYP3A protein that mimics the distribution seen in the zonated liver. The distribution of CYP expression in the bioreactor was shown to vary with exposure to different chemical inducers and growth factors, providing a potential platform to study physiologic zonal responses. In order to explore zonal hepatotoxicity, bioreactors were perfused with APAP (acetominophen) for 24 h, resulting in maximal cell death at the low-oxygen outlet region similar to centrilobular necrotic patterns observed in vivo. This hepatocyte bioreactor system enables further in vitro investigation into zonation-dependent phenomena involving drug metabolism and toxicity.
منابع مشابه
A Microfabricated Platform for Generating Physiologically-Relevant Hepatocyte Zonation
In vitro liver models have been important tools for more than 40 years for academic research and preclinical toxicity screening by the pharmaceutical industry. Hepatocytes, the highly metabolic parenchymal cells of the liver, are efficient at different metabolic chemistries depending on their relative spatial location along the sinusoid from the portal triad to the central vein. Although replic...
متن کاملFormation of steady-state oxygen gradients in vitro: application to liver zonation.
We have developed a perfusion bioreactor system that allows the formation of steady state oxygen gradients in cell culture. In this study, gradients were formed in cultures of rat hepatocytes to study the role of oxygen in modulating cellular functions. A model of oxygen transport in our flat-plate reactor was developed to estimate oxygen distribution at the cell surface. Experimental measureme...
متن کاملMTL Annual Research Report 2004-2005
This project utilizes microfluidic systems to study how groups of liver cells acquire emergent tissue properties. Hepatocytes (the parenchymal cells of the liver) respond to many cues in their microenvironment: neighboring cells, growth factors, extracellular matrix, dissolved oxygen, and their interactions. One tissue property of interest is the compartmentalization of gene expression in multi...
متن کاملFluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies
Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow ...
متن کاملEffect of Mouse Liver Extract on in Vitro Differentiation of Amniotic Membrane Stem Cells into Hepatocyte-Like Cells
ABSTRACT Background and Objective: Multipotent placental amniotic membrane mesenchymal stem cells (MSCs) are capable of differentiating into specialized tissues under different conditions. The aim of this study was to induce differentiation of placental amniotic membrane MSCs from NMRI mouse into hepatocytes using liver extract. &nb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 84 1 شماره
صفحات -
تاریخ انتشار 2005