Immobilization of Mucor miehei Lipase onto Macroporous Aminated Polyethersulfone Membrane for Enzymatic Reactions
نویسندگان
چکیده
Immobilization of enzymes is one of the most promising methods in enzyme performance enhancement, including stability, recovery, and reusability. However, investigation of suitable solid support in enzyme immobilization is still a scientific challenge. Polyethersulfone (PES) and aminated PES (PES-NH2) were successfully synthesized as novel materials for immobilization. Membranes with various pore sizes (from 10-600 nm) based on synthesized PES and PES-NH2 polymers were successfully fabricated to be applied as bioreactors to increase the immobilized lipase performances. The influence of pore sizes, concentration of additives, and the functional groups that are attached on the PES backbone on enzyme loading and enzyme activity was studied. The largest enzyme loading was obtained by Mucor miehei lipase immobilized onto a PES-NH2 membrane composed of 10% of PES-NH2, 8% of dibutyl phthalate (DBP), and 5% of polyethylene glycol (PEG) (872.62 µg/cm2). Hydrolytic activity of the immobilized lipases indicated that the activities of biocatalysts are not significantly decreased by immobilization. From the reusability test, the lipase immobilized onto PES-NH2 showed a better constancy than the lipase immobilized onto PES (the percent recovery of the activity of the lipases immobilized onto PES-NH2 and PES are 97.16% and 95.37%, respectively), which indicates that this novel material has the potential to be developed as a bioreactor for enzymatic reactions.
منابع مشابه
University of Groningen Immobilization of Mucor miehei Lipase onto Macroporous Aminated Polyethersulfone Membrane for Enzymatic Reactions
Immobilization of enzymes is one of the most promising methods in enzyme performance enhancement, including stability, recovery, and reusability. However, investigation of suitable solid support in enzyme immobilization is still a scientific challenge. Polyethersulfone (PES) and aminated PES (PES–NH2) were successfully synthesized as novel materials for immobilization. Membranes with various po...
متن کاملImmobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica--the effect of varied particle size and morphology.
Immobilization of enzymes usually improves the recyclability and stability and can sometimes also improve the activity compared to enzymes free in solution. Mesoporous silica is a widely studied material as host for immobilized enzymes because of its large internal surface area and tunable pores. It has previously been shown that the pore size is critical both for the loading capacity and for t...
متن کاملImmobilization of Rhizomucor miehei Lipase on High Density Polyethylene
Immobilization of Lipase produced from Rhizomucor miehei on HDPE fine powder was investigated. As compared to an aqueous system, immobilization in a non-aquous organic medium such as n-hexane was not successful and caused enzyme denaturation. Prewetting the support with ethanol increased the immobilized protein and enzyme activity as much as 31% and 34%, respectively. The maximum immobilized a...
متن کاملImproved activity of lipase immobilized in microemulsion-based organogels for (R, S)-ketoprofen ester resolution: Long-term stability and reusability
Microemulsion-based organogels (MBGs) were effectively employed for the immobilization of four commonly used lipases. During the asymmetric hydrolysis of ketoprofen vinyl ester at 30 °C for 24 h, lipase from Rhizomucor miehei and Mucor javanicus immobilized in microemulsion-based organogels (RML MBGs and MJL MBGs) maintained good enantioselectivities (eep were 86.2% and 99.2%, respectively), an...
متن کاملLipase-Catalyzed Synthesis of Indolyl 4H-Chromenes via a Multicomponent Reaction in Ionic Liquid
Synthesis of indolyl 4H-chromenes via a three-component reaction catalyzed by lipase in ionic liquidsis reported here for the first time. High yields (77–98%) were obtained when Mucor miehei lipase was used as the catalyst in [EMIM][BF4]. Furthermore, [EMIM][BF4] exhibited good reusability in this enzymatic reaction. This study affords a new example of lipase catalytic promiscuity and broadens ...
متن کامل