Combining Fisher Vector and Convolutional Neural Networks for Image Retrieval
نویسندگان
چکیده
Fisher Vector (FV) and deep Convolutional Neural Network (CNN) are two popular approaches for extracting effective image representations. FV aggregates local information (e.g., SIFT) and have been state-of-the-art before the recent success of deep learning approaches. Recently, combination of FV and CNN has been investigated. However, only the aggregation of SIFT has been tested. In this work, we propose combining CNN and FV built upon binary local features, called BMM-FV. The results show that BMM-FV and CNN improve the latter retrieval performance with less computational effort with respect to the use of the traditional FV which relies on non-binary features.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDeep Fisher Networks for Large-Scale Image Classification
As massively parallel computations have become broadly available with modern GPUs, deep architectures trained on very large datasets have risen in popularity. Discriminatively trained convolutional neural networks, in particular, were recently shown to yield state-of-the-art performance in challenging image classification benchmarks such as ImageNet. However, elements of these architectures are...
متن کاملKernelized Deep Convolutional Neural Network for Describing Complex Images
With the impressive capability to capture visual content, deep convolutional neural networks (CNN) have demonstrated promising performance in various vision-based applications, such as classification, recognition, and object detection. However, due to the intrinsic structure design of CNN, for images with complex content, it achieves limited capability on invariance to translation, rotation, an...
متن کامل