RSIR: regularized sliced inverse regression for motif discovery

نویسندگان

  • Wenxuan Zhong
  • Peng Zeng
  • Ping Ma
  • Jun S. Liu
  • Michael Yu Zhu
چکیده

MOTIVATION Identification of transcription factor binding motifs (TFBMs) is a crucial first step towards the understanding of regulatory circuitries controlling the expression of genes. In this paper, we propose a novel procedure called regularized sliced inverse regression (RSIR) for identifying TFBMs. RSIR follows a recent trend to combine information contained in both gene expression measurements and genes' promoter sequences. Compared with existing methods, RSIR is efficient in computation, very stable for data with high dimensionality and high collinearity, and improves motif detection sensitivities and specificities by avoiding inappropriate model specification. RESULTS We compare RSIR with SIR and stepwise regression based on simulated data and find that RSIR has a lower false positive rate. We also demonstrate an excellent performance of RSIR by applying it to the yeast amino acid starvation data and cell cycle data. AVAILABILITY Matlab programs are available upon request from the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Journal de la Société Française de Statistique Comparison of sliced inverse regression approaches for underdetermined cases

Among methods to analyze high-dimensional data, the sliced inverse regression (SIR) is of particular interest for non-linear relations between the dependent variable and some indices of the covariate. When the dimension of the covariate is greater than the number of observations, classical versions of SIR cannot be applied. Various upgrades were then proposed to tackle this issue such as RSIR a...

متن کامل

Cluster-based regularized sliced inverse regression for forecasting macroeconomic variables

This article concerns the dimension reduction in regression for large dataset. We introduce a new method based on the sliced inverse regression approach, called cluster-based regularized sliced inverse regression. Our method not only keeps the merit of considering both response and predictors information, but also enhances the capability of handling highly correlated variables. It is justified ...

متن کامل

Consistency of regularized sliced inverse regression for kernel models

We develop an extension of the sliced inverse regression (SIR) framework for dimension reduction using kernel models and Tikhonov regularization. The result is a numerically stable nonlinear dimension reduction method. We prove consistency of the method under weak conditions even when the reproducing kernel Hilbert space induced by the kernel is infinite dimensional. We illustrate the utility o...

متن کامل

Inverting hyperspectral images with Gaussian Regularized Sliced Inverse Regression

In the context of hyperspectral image analysis in planetology, we show how to estimate the physical parameters that generate the spectral infrared signal reflected by Mars. The training approach we develop is based on the estimation of the functional relationship between parameters and spectra, using a database of synthetic spectra generated by a physical model. The high dimension of spectra is...

متن کامل

Localized Sliced Inverse Regression

We developed localized sliced inverse regression for supervised dimension reduction. It has the advantages of preventing degeneracy, increasing estimation accuracy, and automatic subclass discovery in classification problems. A semisupervised version is proposed for the use of unlabeled data. The utility is illustrated on simulated as well as real data sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 22  شماره 

صفحات  -

تاریخ انتشار 2005