ON THE BIRATIONAL p-ADIC SECTION CONJECTURE
نویسنده
چکیده
In this manuscript we introduce/prove a Z/p meta-abelian form of the birational p-adic Section Conjecture for curves. This is a much stronger result than the usual p-adic birational Section Conjecture for curves, and makes an effective p-adic Section Conjecture for curves quite plausible.
منابع مشابه
Z/p metabelian birational p-adic section conjecture for varieties
In this manuscript we generalize the Z/p metabelian birational p-adic Section Conjecture for curves, as introduced and proved in Pop [P2], to all complete smooth varieties. As a consequence one gets a minimalistic p-adic analog of the famous Artin–Schreier theorem on the Galois characterization of the orderings of fields.
متن کاملPro-p hom-form of the birational anabelian conjecture over sub-p-adic fields
We prove a Hom-form of the pro-p birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.
متن کاملThe pro-p Hom-form of the birational anabelian conjecture
We prove a pro-p Hom-form of the birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.
متن کاملBirational Smooth Minimal Models Have Equal Hodge Numbers in All Dimensions
In this paper, we prove that birational smooth minimal models over C have equal Hodge numbers in all dimensions by an arithmetic method. Our method is a refinement of the method of Batyrev on Betti numbers who used p-adic integration and the Weil conjecture. Our ingredient is to use further arithmetic results such as the Chebotarev density theorem and p-adic Hodge theory.
متن کاملCohomology Theory in Birational Geometry
This is a continuation of [10], where it was shown that K-equivalent complex projective manifolds have the same Betti numbers by using the theory of p-adic integrals and Deligne’s solution to the Weil conjecture. The aim of this note is to show that with a little more book-keeping work, namely by applying Faltings’ p-adic Hodge Theory, our p-adic method also leads to the equivalence of Hodge nu...
متن کامل