Functional Nav1.8 channels in intracardiac neurons: the link between SCN10A and cardiac electrophysiology.
نویسندگان
چکیده
RATIONALE The SCN10A gene encodes the neuronal sodium channel isoform Na(V)1.8. Several recent genome-wide association studies have linked SCN10A to PR interval and QRS duration, strongly suggesting an as-yet unknown role for Na(V)1.8 in cardiac electrophysiology. OBJECTIVE To demonstrate the functional presence of SCN10A/Nav1.8 in intracardiac neurons of the mouse heart. METHODS AND RESULTS Immunohistochemistry on mouse tissue sections showed intense Na(V)1.8 labeling in dorsal root ganglia and intracardiac ganglia and only modest Na(V)1.8 expression within the myocardium. Immunocytochemistry further revealed substantial Na(V)1.8 staining in isolated neurons from murine intracardiac ganglia but no Na(V)1.8 expression in isolated ventricular myocytes. Patch-clamp studies demonstrated that the Na(V)1.8 blocker A-803467 (0.5-2 μmol/L) had no effect on either mean sodium current (I(Na)) density or I(Na) gating kinetics in isolated myocytes but significantly reduced I(Na) density in intracardiac neurons. Furthermore, A-803467 accelerated the slow component of current decay and shifted voltage dependence of inactivation toward more negative voltages, as expected for blockade of Na(V)1.8-based I(Na). In line with these findings, A-803467 did not affect cardiomyocyte action potential upstroke velocity but markedly reduced action potential firing frequency in intracardiac neurons, confirming a functional role for Na(V)1.8 in cardiac neural activity. CONCLUSIONS Our findings demonstrate the functional presence of SCN10A/Na(V)1.8 in intracardiac neurons, indicating a novel role for this neuronal sodium channel in regulation of cardiac electric activity.
منابع مشابه
Integrative Physiology Functional NaV1.8 Channels in Intracardiac Neurons
Rationale: The SCN10A gene encodes the neuronal sodium channel isoform NaV1.8. Several recent genome-wide association studies have linked SCN10A to PR interval and QRS duration, strongly suggesting an as-yet unknown role for NaV1.8 in cardiac electrophysiology. Objective: To demonstrate the functional presence of SCN10A/Nav1.8 in intracardiac neurons of the mouse heart. Methods and Results: Imm...
متن کاملIntegrative Physiology Blocking Scn10a Channels in Heart Reduces Late Sodium Current and Is Antiarrhythmic
Rationale: Although the sodium channel locus SCN10A has been implicated by genome-wide association studies as a modulator of cardiac electrophysiology, the role of its gene product Nav1.8 as a modulator of cardiac ion currents is unknown. Objective: We determined the electrophysiological and pharmacological properties of Nav1.8 in heterologous cell systems and assessed the antiarrhythmic effect...
متن کاملNeuronal Nav1.8 Channels as a Novel Therapeutic Target of Acute Atrial Fibrillation Prevention
BACKGROUND Ganglionated plexus have been developed as additional ablation targets to improve the outcome of atrial fibrillation (AF) besides pulmonary vein isolation. Recent studies implicated an intimate relationship between neuronal sodium channel Nav1.8 (encoded by SCN10A) and AF. The underlying mechanism between Nav1.8 and AF remains unclear. This study aimed to determine the role of Nav1.8...
متن کاملNav1.8 channels in ganglionated plexi modulate atrial fibrillation inducibility.
AIMS Emerging evidences indicate that SCN10A/NaV1.8 is associated with cardiac conduction and atrial fibrillation, but the exact role of NaV1.8 in cardiac electrophysiology remains poorly understood. The present study was designed to investigate the effects of blocking NaV1.8 channels in cardiac ganglionated plexi (GP) on modulating cardiac conduction and atrial fibrillation inducibility in the...
متن کاملBlocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic.
RATIONALE Although the sodium channel locus SCN10A has been implicated by genome-wide association studies as a modulator of cardiac electrophysiology, the role of its gene product Nav1.8 as a modulator of cardiac ion currents is unknown. OBJECTIVE We determined the electrophysiological and pharmacological properties of Nav1.8 in heterologous cell systems and assessed the antiarrhythmic effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 111 3 شماره
صفحات -
تاریخ انتشار 2012