Factorizations, Riemann-Hilbert problems and the corona theorem
نویسندگان
چکیده
The solvability of the Riemann–Hilbert boundary value problem on the real line is described in the case when its matrix coefficient admits a Wiener–Hopf-type factorization with bounded outer factors, but rather general diagonal elements of its middle factor. This covers, in particular, the almost periodic setting, when the factorization multiples belong to the algebra generated by the functions eλ(x) := e , λ ∈ R. Connections with the corona problem are discussed. Based on those, constructive factorization criteria are derived for several types of triangular 2× 2 matrices with diagonal entries e±λ and non-zero off diagonal entry of the form a−e−β + a+eν with ν, β 0, ν + β > 0 and a± analytic and bounded in the upper/lower half plane.
منابع مشابه
A New Construction of Riemann Surfaces with Corona
equivalently [Gar,VIII.2], the corona M(X) \ ι(X) is empty. (Here M(X) is the maximal ideal space of the algebra H∞(X) of bounded holomorphic functions on X and ι is the natural inclusion X ↪→ M(X).) If X does not satisfy the corona theorem then X may be said to have corona. Riemann surfaces known to satisfy the corona theorem include the unit disk [Car], bordered Riemann surfaces [All] [Sto], ...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 86 شماره
صفحات -
تاریخ انتشار 2012