Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder.

نویسندگان

  • Marie Fernet
  • Moez Gribaa
  • Mustafa A M Salih
  • Mohamed Zein Seidahmed
  • Janet Hall
  • Michel Koenig
چکیده

Ten new patients with ataxia telangiectasia-like disorder (ATLD) from three unrelated Saudi Arabian families have been identified aged 5-37 representing the largest cohort of ATLD patients ever identified. They presented with an early-onset, slowly progressive, ataxia plus ocular apraxia phenotype with an absence of tumor development, even in the oldest patient. Extra-neurological features such as telangiectasia, raised alpha-fetoprotein and reduced immunoglobulin levels were absent. No translocations were found in the two investigated patients, and the presence of microcephaly was noted in four out of eight ascertained patients. All patients are homozygous for a novel missense mutation (630G-->C, W210C) of the MRE11 gene. The cellular consequences of this amino acid change, localized in the nuclease domain of the Mre11 protein, have been determined in fibroblast cultures established from two individuals. They showed high constitutive levels of Mre11 and Rad50 proteins compared with cells from normal individuals but a very low level of the Nbs1 protein. After exposure to ionizing radiation, a dose-dependent defect in ataxia telangiectasia mutated (ATM)-serine 1981, p53-serine 15 and Chk2 phosphorylation, and p53 stabilization were noted, together with a failure to form Mre11 foci and enhanced radiation sensitivity. Formation of gammaH2AX foci was similar to that seen in normal fibroblasts under the experimental conditions examined. These results emphasize the importance of functional interactions among the three proteins of the Mre11-Rad50-Nbs1 complex and lend support to a role of this complex as a sensor of DNA double-strand breaks, acting upstream of ATM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair

The Mre11 complex (Mre11-Rad50-Nbs1 or MRN) binds double-strand breaks where it interacts with CtIP/Ctp1/Sae2 and ATM/Tel1 to preserve genome stability through its functions in homology-directed repair, checkpoint signaling and telomere maintenance. Here, we combine biochemical, structural and in vivo functional studies to uncover key properties of Mre11-W243R, a mutation identified in two pedi...

متن کامل

Correction: Mre11 Assembles Linear DNA Fragments into DNA Damage Signaling Complexes

Mre11/Rad50/Nbs1 complex (MRN) is essential to suppress the generation of double-strand breaks (DSBs) during DNA replication. MRN also plays a role in the response to DSBs created by DNA damage. Hypomorphic mutations in Mre11 (which causes an ataxia-telangiectasia-like disease [ATLD]) and mutations in the ataxia-telangiectasia-mutated (ATM) gene lead to defects in handling damaged DNA and to si...

متن کامل

Human MRE11 is inactivated in mismatch repair-deficient cancers.

Mutations of the ATM and NBS1 genes are responsible for the inherited Ataxia-Telangiectasia and Nijmegen Breakage Syndrome, both of which are associated with a predisposition to cancer. A related syndrome, the Ataxia-Telangiectasia-like disorder, is due to mutations of the MRE11 gene. However, the role of this gene in cancer development has not been established. Here we describe an often homozy...

متن کامل

Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms.

DNA double-strand breaks (DSBs) can lead to instability of the genome if not repaired correctly. The MRE11/RAD50/NBS1 (MRN) complex binds DSBs and initiates damage-induced signaling cascades via activation of the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia- and rad3-related (ATR) kinases. Mutations throughout MRE11 cause ataxia-telangiectasia-like disorder (ATLD) featuring cer...

متن کامل

Alterations of the double-strand break repair gene MRE11 in cancer.

MRE11 plays a role in DNA double-strand break repair. Hypomorphic mutations of MRE11 have been demonstrated in ataxia-telangiectasia (AT)-like disorder. ATM mutations play a causal role in AT and have been demonstrated in lymphoid malignancies in patients without AT histories. By analogy with the relationship of ATM to lymphoid malignancies, it is probable that alterations of MRE11 are associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2005