Was low CO2 a driving force of C4 evolution: Arabidopsis responses to long-term low CO2 stress

نویسندگان

  • Yuanyuan Li
  • Jiajia Xu
  • Noor Ul Haq
  • Hui Zhang
  • Xin-Guang Zhu
چکیده

The responses of long-term growth of plants under elevated CO2 have been studied extensively. Comparatively, the responses of plants to subambient CO2 concentrations have not been well studied. This study aims to investigate the responses of the model C3 plant, Arabidopsis thaliana, to low CO2 at the molecular level. Results showed that low CO2 dramatically decreased biomass productivity, together with delayed flowering and increased stomatal density. Furthermore, alteration of thylakoid stacking in both bundle sheath and mesophyll cells, upregulation of PEPC and PEPC-K together with altered expression of a number of regulators known involved in photosynthesis development were observed. These responses to low CO2 are discussed with regard to the fitness of C3 plants under low CO2. This work also briefly discusses the relevance of the data to C4 photosynthesis evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological and growth responses of C3 and C4 plants to reduced temperature when grown at low CO2 of the last ice age.

During the last ice age, CO2 concentration ([CO2]) was 180-200 micromol/mol compared with the modern value of 380 micromol/mol, and global temperatures were approximately 8 degrees C cooler. Relatively little is known about the responses of C3 and C4 species to long-term exposure to glacial conditions. Here Abutilon theophrasti Medik. (C3) and Amaranthus retroflexus L. (C4) were grown at 200 mi...

متن کامل

Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions

C4 plants contribute » 20% of global gross primary productivity, and uncertainties regarding their responses to rising atmospheric CO2 concentrations may limit predictions of future global change impacts on C4-dominated ecosystems. These uncertainties have not yet been considered rigorously due to expectations of C4 low responsiveness based on photosynthetic theory and early experiments. We car...

متن کامل

Photorespiration connects C3 and C4 photosynthesis.

C4 plants evolved independently more than 60 times from C3 ancestors. C4 photosynthesis is a complex trait and its evolution from the ancestral C3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and the current CO2 concentration in the atmosphere, the ...

متن کامل

Meta-analysis reveals profound responses of plant traits to glacial CO2 levels

A general understanding of the links between atmospheric CO2 concentration and the functioning of the terrestrial biosphere requires not only an understanding of plant trait responses to the ongoing transition to higher CO2 but also the legacy effects of past low CO2. An interesting question is whether the transition from current to higher CO2 can be thought of as a continuation of the past tra...

متن کامل

Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana.

The mechanisms of carbon concentration in marine diatoms are controversial. At low CO2 , decreases in O2 evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C4 mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014