The aging neuromuscular system and motor performance.
نویسندگان
چکیده
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.
منابع مشابه
A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders
Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...
متن کاملNeural control of aging skeletal muscle.
Functional and structural decline in the neuromuscular system with aging has been recognized as a cause of impairment in physical performance and loss of independence in the elderly. Alterations in spinal cord motor neurones and at the neuromuscular junction have been identified as evidence of denervation in skeletal muscles from aging mammals, including humans. However, the reciprocal influenc...
متن کاملEffect of Dohsa-hou psycho-rehabilitation method on the gross motor activity of children aged 12-4 years old with spastic cerebral palsy: A randomized double-blinded clinical trial
Introduction: There are various methods for managing and treating motor problems in children with cerebral palsy, which their effectiveness can be measured in muscle tone, gross motor skills, and voluntary movements. Among these intervention methods, Dohsa-Hou treatment approach was designed to affect the motor function of children with cerebral palsy. This study aimed to evaluate the effect o...
متن کاملMilk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice
Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was sugg...
متن کاملMechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting.
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of moto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 121 4 شماره
صفحات -
تاریخ انتشار 2016