Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
نویسندگان
چکیده
INTRODUCTION American Heart Association/American College of Cardiology guidelines recommend a compression-to-ventilation ratio (C/V ratio) of 15:2 during cardiopulmonary resuscitation (CPR) for out-of-the-hospital cardiac arrest. Recent data have shown that frequent ventilations are unnecessary and may be harmful during CPR, since each positive-pressure ventilation increases intrathoracic pressure and may increase intracranial pressure and decrease venous blood return to the right heart and thereby decrease both the cerebral and coronary perfusion pressures. HYPOTHESIS We hypothesized that reducing the ventilation rate by increasing the C/V ratio from 15:2 to 15:1 will increase vital-organ perfusion pressures without compromising oxygenation and acid-base balance. METHODS Direct-current ventricular fibrillation was induced in 8 pigs. After 4 min of untreated ventricular fibrillation without ventilation, all animals received 4 min of standard CPR with a C/V ratio of 15:2. Animals were then randomized to either (A) a C/V ratio of 15:1 and then 15:2, or (B) a C/V ratio of 15:2 and then 15:1, for 3 min each. During CPR, ventilations were delivered with an automatic transport ventilator, with 100% oxygen. Right atrial pressure, intratracheal pressure (a surrogate for intrathoracic pressure), aortic pressure, and intracranial pressure were measured. Coronary perfusion pressure was calculated as diastolic aortic pressure minus right atrial pressure. Cerebral perfusion pressure was calculated as mean aortic pressure minus mean intracranial pressure. Arterial blood gas values were obtained at the end of each intervention. A paired t test was used for statistical analysis, and a p value < 0.05 was considered significant. RESULTS The mean +/- SEM values over 1 min with either 15:2 or 15:1 C/V ratios were as follows: intratracheal pressure 0.93 +/- 0.3 mm Hg versus 0.3 +/- 0.28 mm Hg, p = 0.006; coronary perfusion pressure 10.1 +/- 4.5 mm Hg versus 19.3 +/- 3.2 mm Hg, p = 0.007; intracranial pressure 25.4 +/- 2.7 mm Hg versus 25.7 +/- 2.7 mm Hg, p = NS; mean arterial pressure 33.1 +/- 3.7 mm Hg versus 40.2 +/- 3.6 mm Hg, p = 0.007; cerebral perfusion pressure 7.7 +/- 6.2 mm Hg versus 14.5 +/- 5.5 mm Hg, p = 0.008. Minute area intratracheal pressure was 55 +/- 17 mm Hg . s versus 22.3 +/- 10 mm Hg . s, p < 0.001. End-tidal CO(2) with 15:2 versus 15:1 was 24 +/- 3.6 mm Hg versus 29 +/- 2.5 mm Hg, respectively, p = 0.001. Arterial blood gas values were not significantly changed with 15:2 versus 15:1 C/V ratios: pH 7.28 +/- 0.03 versus 7.3 +/- 0.03; P(aCO(2)) 37.7 +/- 2.9 mm Hg versus 37.6 +/- 3.5 mm Hg; and P(aO(2)) 274 +/- 36 mm Hg versus 303 +/- 51 mm Hg. CONCLUSIONS In a porcine model of ventricular fibrillation cardiac arrest, reducing the ventilation frequency during CPR by increasing the C/V ratio from 15:2 to 15:1 resulted in improved vital-organ perfusion pressures, higher end-tidal CO(2) levels, and no change in arterial oxygen content or acid-base balance.
منابع مشابه
Mechanical ventilation may not be essential for initial cardiopulmonary resuscitation.
BACKGROUND In a rodent model of cardiac arrest and resuscitation in which the inspired gas mixture was enriched with oxygen, resuscitability and survival were unaffected by positive pressure ventilation. In the present study, in a larger animal model, tidal volumes generated during precordial compression and with spontaneous gasping were quantitated. METHODS Domestic pigs with an average weig...
متن کاملA Study of Cerebral Performance Categories Based on Initial Rhythm and Resuscitation Time Following In-Hospital Cardiac Arrest in a State Hospital in Turkey
Background: The cerebral performance category (CPC) score is widely used in research and quality assurance to assess neurologic outcome following cardiac arrest. However, little is known about the results of the CPC in Turkey. Objective: This study aimed to determine whether the CPC is associated with the initial rhythm and resuscitation time following re...
متن کاملOutcomes of cardiopulmonary resuscitation in the emergency department
Objective: Cardiopulmonary resuscitation (CPR) is a lifesaving technique useful in the prevention of death or delaying it in a person with cardiac arrest. In this regard, demographic information about patients who need CPR is vital. Methods: In this cross-sectional study patients with cardiopulmonary arrest or arrhythmias admitted to Imam Reza and Sina ed...
متن کاملThe effects of an automatic, low pressure and constant flow ventilation device versus manual ventilation during cardiovascular resuscitation in a porcine model of cardiac arrest.
BACKGROUND Cardiac arrest is an important cause of mortality. Cardiopulmonary resuscitation (CPR) improves survival, however, delivery of effective CPR can be challenging and combining effective chest compressions with ventilation, while avoiding over-ventilation is difficult. We hypothesized that ventilation with a pneumatically powered, automatic ventilator (Oxylator(®)) can provide adequate ...
متن کاملThe Aassociation between Pre-Cardiac Arrest Comorbidity and Unsuccessful Cardiopulmonary Resuscitation in Patients with Cardiac Arrest
Background and Objective: Patients suffering from cardiac arrest (CA) have poor prognosis and survival. The association of pre-arrest comorbidity with unsuccessful resuscitation in patients with CA is far from clear. The aim of the present study was to investigate the association between pre-existing comorbidity and unsuccessful resuscitation following CA in Iranian patients. Materials and Met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respiratory care
دوره 50 5 شماره
صفحات -
تاریخ انتشار 2005