Dobrushin-Kotecký-Schlosman theorem for polygonal Markov fields in the plane

نویسنده

  • Tomasz Schreiber
چکیده

We establish a version of the Dobrushin-Kotecký-Schlosman phase separation theorem for the length-interacting Arak-Surgailis polygonal Markov fields with V-shaped nodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dobrushin-Kotecký-Shlosman theorem for polygonal Markov fields in the plane

We consider the so-called length-interacting Arak-Surgailis polygonal Markov fields with V-shaped nodes – a continuum and isometry invariant process in the plane sharing a number of properties with the two-dimensional Ising model. For these polygonal fields we establish a low-temperature phase separation theorem in the spirit of the Dobrushin-Kotecký-Shlosman theory, with the corresponding Wulf...

متن کامل

Non-homogeneous polygonal Markov fields in the plane: graphical representations and geometry of higher order correlations

We consider polygonal Markov fields originally introduced by Arak and Surgailis [2]. Our attention is focused on fields with nodes of order two, which can be regarded as continuum ensembles of non-intersecting contours in the plane, sharing a number of features with the two-dimensional Ising model. We introduce non-homogeneous version of polygonal fields in anisotropic enviroment. For these fie...

متن کامل

Perfect simulation for length-interacting polygonal Markov fields in the plane

The purpose of this paper is to construct perfect samplers for length-interacting Arak–Clifford–Surgailis polygonal Markov fields in the plane with nodes of order 2 (V-shaped nodes). This is achieved by providing for the polygonal fields a hard core marked point process representation with individual points carrying polygonal loops as their marks, so that the coupling from the past and clan of ...

متن کامل

Polygonal web representation for higher order correlation functions of consistent polygonal Markov fields in the plane

We consider polygonal Markov fields originally introduced by Arak and Surgailis [1, 2]. Our attention is focused on fields with nodes of order two, which can be regarded as continuum ensembles of non-intersecting contours in the plane, sharing a number of salient features with the two-dimensional Ising model. The purpose of this paper is to establish an explicit stochastic representation for th...

متن کامل

A Martingale Proof of Dobrushin’s Theorem for Non-Homogeneous Markov Chains

In 1956, Dobrushin proved an important central limit theorem for nonhomogeneous Markov chains. In this note, a shorter and different proof elucidating more the assumptions is given through martingale approximation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004