Characterizing trees in property-oriented concept lattices

نویسنده

  • H. Mao
چکیده

Property-oriented concept lattices are systems of conceptual clusters called property-oriented concepts, which are partially ordered by the subconcept/superconcept relationships. Property-oriented concept lattices are basic structures used in formal concept analysis. In general, a property-oriented concept lattice may contain overlapping clusters and is not to be a tree construction. Additionally, tree-like classification schemes are appealing and are produced by several clustering methods. In this paper, we present necessary and sufficient conditions on input data for the output property-oriented concept lattice to form a tree after one removes its greatest element. After applying to input data for which the associated property-oriented concept lattice is a tree, we present an algorithm for computing property-oriented concept lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual multi-adjoint concept lattices

Several papers relate different alternative approaches to classical concept lattices: such as property-oriented and object-oriented concept lattices and the dual concept lattices. Whereas the usual approach to the latter is via a negation operator, this paper presents a fuzzy generalization of the dual concept lattice, the dual multi-adjoint concept lattice, in which the philosophy of the multi...

متن کامل

Attribute Reduction Based on Property Pictorial Diagram

This paper mainly studies attribute reduction which keeps the lattice structure in formal contexts based on the property pictorial diagram. Firstly, the property pictorial diagram of a formal context is defined. Based on such diagram, an attribute reduction approach of concept lattice is achieved. Then, through the relation between an original formal context and its complementary context, an at...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

The concept lattice functors

This paper is concerned with the relationship between contexts, closure spaces, and complete lattices. It is shown that, for a unital quantale L, both formal concept lattices and property oriented concept lattices are functorial from the category L-Ctx of L-contexts and infomorphisms to the category L-Sup of complete L-lattices and suprema-preserving maps. Moreover, the formal concept lattice f...

متن کامل

Characterizing Trees in Concept Lattices

Concept lattices are systems of conceptual clusters, called formal concepts, which are partially ordered by the subconcept/superconcept relationship. Concept lattices are basic structures used in formal concept analysis. In general, a concept lattice may contain overlapping clusters and need not be a tree. On the other hand, tree-like classification schemes are appealing and are produced by sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016