Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters.

نویسندگان

  • H P Koch
  • M P Kavanaugh
  • C S Esslinger
  • N Zerangue
  • J M Humphrey
  • S G Amara
  • A R Chamberlin
  • R J Bridges
چکیده

Within the mammalian central nervous system, the efficient removal of L-glutamate from the extracellular space by excitatory amino acid transporters (EAATs) has been postulated to contribute to signal termination, the recycling of transmitter, and the maintenance of L-glutamate at concentrations below those that are excitotoxic. The development of potent and selective inhibitors of the EAATs has contributed greatly to the understanding of the functional roles of these transporters. In the present study, we use a library of conformationally constrained glutamate analogs to address two key issues: the differentiation of substrates from nontransportable inhibitors and the comparison of the pharmacological profile of synaptosomal uptake with those of the individual EAAT clones. We demonstrate that the process of transporter-mediated heteroexchange can be exploited in synaptosomes to rapidly distinguish transportable from nontransportable inhibitors. Using this approach, we demonstrate that 2,4-methanopyrrolidine-2,4-dicarboxylate, cis-1-aminocyclobutane-1,3-dicarboxylate, and L-trans-2, 4-pyrrolidine dicarboxylate act as substrates for the rat forebrain synaptosomal glutamate uptake system. In contrast, L-anti-endo-3, 4-methanopyrrolidine-3,4-dicarboxylate, L-trans-2,3-pyrrolidine dicarboxylate, and dihydrokainate proved to be competitive inhibitors of D-[(3)H]aspartate uptake that exhibited little or no activity as substrates. When these same compounds were characterized for substrate activity by recording currents in voltage-clamped Xenopus laevis oocytes expressing the human transporter clones EAAT1, EAAT2, or EAAT3, it was found that the pharmacological profile of the synaptosomal system exhibited the greatest similarity with the EAAT2 subtype, a transporter believed to be expressed primarily on glial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate turnover by transporters curtails synaptic glutamate transients.

Although inhibitors of glutamate transport prolong synaptic currents at many glutamate synapses, the cause of the current prolongation is unclear. Transport inhibitors may prolong synaptic currents by simply interfering with synaptic glutamate binding to transporters, by inhibiting substrate translocation, or by promoting accumulation of ambient glutamate, which may act cooperatively at recepto...

متن کامل

Aspartate-444 Is Essential for Productive Substrate Interactions in a Neuronal Glutamate Transporter

In the central nervous system, electrogenic sodium- and potassium-coupled glutamate transporters terminate the synaptic actions of this neurotransmitter. In contrast to acidic amino acids, dicarboxylic acids are not recognized by glutamate transporters, but the related bacterial DctA transporters are capable of transporting succinate and other dicarboxylic acids. Transmembrane domain 8 contains...

متن کامل

The SLC1 high-affinity glutamate and neutral amino acid transporter family.

Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one...

متن کامل

Characterization of L-glutamic acid transport by glioma cells in culture: evidence for sodium-independent, chloride-dependent high affinity influx.

The transport of radiolabeled L-glutamic acid by LRM55 glioma cells in culture was examined. Time course studies indicated that L-[3H]glutamic acid is rapidly accumulated, and then 3H is lost from the cell, presumably in the form of glutamate metabolites. Kinetic analysis of L-glutamate uptake provided evidence for two components of transport. A low affinity component was found to persist at 0 ...

متن کامل

Influence of the oestrous cycle on L-glutamate and L-aspartate transport in rat brain synaptosomes.

Oestrous cycle and sex differences in sodium-dependent transport of L-[3H]glutamate and L-[3H]aspartate were investigated employing well washed synaptosomes prepared from rat brain cortex. Transport was best analysed on the basis of two components, a high and low affinity transport site. Oestrous cycle and sex differences were observed for both substrates. The high affinity transporter displaye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 56 6  شماره 

صفحات  -

تاریخ انتشار 1999