On progressively censored competing risks data for Weibull distributions

نویسندگان

  • Bhuvanesh Pareek
  • Debasis Kundu
  • Sumit Kumar
چکیده

In survival analysis, or in reliability study, an investigator is often interested in the assessment of a specific risk in the presence of other risk factors. It is well known as the competing risks problem in statistical literature. Moreover, censoring is inevitable in any life testing or reliability study. In this paper, we consider a very general censoring scheme, namely a progressive censoring scheme. It is further assumed that the lifetime distribution of the individual causes are independent and Weibull-distributed with the same shape parameters but different scale parameters.We obtain themaximum likelihood and approximate maximum likelihood estimates of the unknown parameters. We also compute the observed Fisher informationmatrix using the missing information principles, and use them to compute the asymptotic confidence intervals. Monte Carlo simulations are performed to compare the performances of the different methods, and one data set is analyzed for illustrative purposes.Wealso discuss different optimality criteria, and selected optimal progressive censoring plans are presented. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Progressively Censored Competing Risks Data

In this paper we consider the Bayesian inference of the unknown parameters of the progressively censored competing risks data, when the lifetime distributions are Weibull. It is assumed that the latent cause of failures have independent Weibull distributions with the common shape parameter, but different scale parameters. In this article, it is assumed that the shape parameter has a log-concave...

متن کامل

Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions

The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...

متن کامل

Modeling of splat particle splashing data during thermal spraying with the Burr distribution

Splashing of splat particles is one of the most important phenomena in industrial processes such as thermal spray coating. The data relative to the degree of splashing of splats sprayed with a normal angle are commonly characterized by the Weibull distribution function. In this present study, an effort has been made to show that the Burr distribution is better than the Weibull distribution for ...

متن کامل

Analysis of left truncated and right censored competing risks data

In this article, the analysis of left truncated and right censored competing risks data is carried out, under the assumption of the latent failure times model. It is assumed that there are two competing causes of failures, although most of the results can be extended for more than two causes of failures. The lifetimes corresponding to the competing causes of failures are assumed to follow Weibu...

متن کامل

Tracking Interval for Doubly Censored Data with Application of Plasma Droplet Spread Samples

Doubly censoring scheme, which includes left as well as right censored observations, is frequently observed in practical studies. In this paper we introduce a new interval say tracking interval for comparing the two rival models when the data are doubly censored. We obtain the asymptotic properties of maximum likelihood estimator under doubly censored data and drive a statistic for testing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2009